Raft分布式一致性研究

Raft分布式一致性研究

年前有点时间,决定把Raft分布式一致性协议实现一下,加深理解和认识,发现这件事真的是“纸上得来终觉浅,须知此事要躬行”。照着协议上的规则来写,就短短的几条规则,代码可以很快的完成,但是要想正确运行,通过所有的测试案例,那真是要磨掉一层皮,刚刚过年没回老家,在上海有时间调试了几天,终于是跑通所有的测试用例。同时也是第一次使用go语言,然后,发现经过简单的磨合之后,除了变量和函数的定义语法有点不同,其他很多和c语言差不多,很快就编写自如了,还挺喜欢这个语言的,如果说三个最先想到的特点:1. 简洁,2. 多线程的使用非常方便,3. -race竞态条件检查功能简直帅呆了,检查多线程的安全问题太方便了。最早的时候,没有启用这个选项,不知道这个用途,后面看课程说明里面说本地调试阶段要加上这个参数,就试了一下,发现一堆的竞态条件冲突,真是惊出一身的冷汗。要是没有这个检查功能,要是用的是Java,那多危险啊。自认为对于多线程的处理还是很有经验的,还是会犯很多的错误,所以,-race从语言层面进行了支持,无疑是非常优秀的,用上这个参数之后对于多线程的处理更有信心了。多扯几句,用过多个编程语言进行过大量的编码之后发现,编程语言也只是一个表达工具,和我们写文章使用中文还是英文一样,区别不是那么大,最主要的还是编程的思想和经验。当然,编程语言的不同,组织形式和适用场景也会有一些区别,比如写中国古诗,那用英语就没法写,而写莎士比亚的十四行诗,用中文估计也没有那个韵律。编程语言也是的,大多数现代的通用编程语言,在大多数场景都是可以完成工作的,基本的设计模式其实也适用。但特定的一些场景,不同的语言有不同的优势,这个就需要有非常丰富的经验了。如果仅掌握一门或者两门语言,那肯定是所有的场景会使用自己熟悉的语言去实现,这时可能就会在一些特定的场景里面事倍功半了。所以,多精通几门语言,在特定的场景下就可以信手拈来,事半功倍。当然,这个要根据实际的时间和经验情况来决定,真正精通一门语言之后,再去学另外的一门语言,就要容易多了。相反,有些人掌握了很多门helloword的语言,但没有真正精通一门语言,还不如不要去学很多的语言,把自己最擅长的一门语言用到精通。

6.824课程

项目是mit大学的6.824课程: http://nil.csail.mit.edu/6.824/2022/labs/lab-raft.html
把代码仓库克隆到本地,使用自己熟悉的IDE打开项目,我是直接在Windows的WSL里面安装的go,使用linux的命令行编译和执行,不太熟悉gdb,也没有使用debug,主要是通过日志来定位问题,多看看日志之后,就熟悉了协议的交互过程。

参考文档

这个是官方的Raft论文,简直是字字珠玑,Figure2一页基本上就把整个协议的精髓描述出来了,值得学习:
https://raft.github.io/raft.pdf
另外,就是官方https://raft.github.io/ 首页的这个动画可以多看看,大概就知道选举的过程了,timeout在动画中非常直观。
然后,就是http://thesecretlivesofdata.com/raft/ 这个交互式的动画展示,把Raft的选举和日志复制的过程讲得非常清晰,我是反复看了这个动画很多遍,每一个状态的变化都有深意,多看几次就能明白了。

我的实现

package raft

//
// this is an outline of the API that raft must expose to
// the service (or tester). see comments below for
// each of these functions for more details.
//
// rf = Make(...)
//   create a new Raft server.
// rf.Start(command interface{}) (index, term, isleader)
//   start agreement on a new log entry
// rf.GetState() (term, isLeader)
//   ask a Raft for its current term, and whether it thinks it is leader
// ApplyMsg
//   each time a new entry is committed to the log, each Raft peer
//   should send an ApplyMsg to the service (or tester)
//   in the same server.
//

import (
    "6.824/labgob"
    "bytes"
    "fmt"
    "math/rand"
    "sort"

    //  "bytes"
    "sync"
    "sync/atomic"
    "time"

    //  "6.824/labgob"
    "6.824/labrpc"
)

const (
    FOLLOWER  = 0
    CANDIDATE = 1
    LEADER    = 2

    ELECT_TIMEOUT_MIN  = 150 * time.Millisecond
    ELECT_TIMEOUT_MAX  = 300 * time.Millisecond
    HEARTBEAT_INTERVAL = 70 * time.Millisecond
)

//
// as each Raft peer becomes aware that successive log entries are
// committed, the peer should send an ApplyMsg to the service (or
// tester) on the same server, via the applyCh passed to Make(). set
// CommandValid to true to indicate that the ApplyMsg contains a newly
// committed log entry.
//
// in part 2D you'll want to send other kinds of messages (e.g.,
// snapshots) on the applyCh, but set CommandValid to false for these
// other uses.
//
type ApplyMsg struct {
    CommandValid bool
    Command      interface{}
    CommandIndex int

    // For 2D:
    SnapshotValid bool
    Snapshot      []byte
    SnapshotTerm  int
    SnapshotIndex int
}

type Entry struct {
    //Index int
    Term    int
    Command interface{}
}

//
// A Go object implementing a single Raft peer.
//
type Raft struct {
    mu        sync.Mutex          // Lock to protect shared access to this peer's state
    peers     []*labrpc.ClientEnd // RPC end points of all peers
    persister *Persister          // Object to hold this peer's persisted state
    me        int                 // this peer's index into peers[]
    dead      int32               // set by Kill()

    // Your data here (2A, 2B, 2C).
    // Look at the paper's Figure 2 for a description of what
    // state a Raft server must maintain.
    leaderId     int
    role         int
    votedCount   int
    baseLogIndex int

    receivedHeartbeat bool
    grantedVote       bool
    chanApply         chan ApplyMsg

    currentTerm int
    votedFor    int
    log         []Entry

    commitIndex int
    lastApplied int

    nextIndex  []int
    matchIndex []int
}

// return currentTerm and whether this server
// believes it is the leader.
func (rf *Raft) GetState() (int, bool) {
    rf.mu.Lock()
    defer rf.mu.Unlock()
    return rf.currentTerm, rf.role == LEADER
}

//
// save Raft's persistent state to stable storage,
// where it can later be retrieved after a crash and restart.
// see paper's Figure 2 for a description of what should be persistent.
//
func (rf *Raft) persist() {
    // Your code here (2C).
    // Example:
    raftState := rf.encodeRaftState()
    rf.persister.SaveRaftState(raftState)
}

func (rf *Raft) encodeRaftState() []byte {
    w := new(bytes.Buffer)
    e := labgob.NewEncoder(w)
    _ = e.Encode(rf.currentTerm)
    _ = e.Encode(rf.votedFor)
    _ = e.Encode(rf.baseLogIndex)
    _ = e.Encode(rf.log)
    data := w.Bytes()
    return data
}

func (rf *Raft) persistWithSnapshot(snapshot []byte) {
    // Your code here (2C).
    // Example:
    raftState := rf.encodeRaftState()
    rf.persister.SaveStateAndSnapshot(raftState, snapshot)
}

//
// restore previously persisted state.
//
func (rf *Raft) readPersist(data []byte) {
    if data == nil || len(data) < 1 { // bootstrap without any state?
        return
    }
    // Your code here (2C).
    // Example:
    r := bytes.NewBuffer(data)
    d := labgob.NewDecoder(r)
    var currentTerm int
    var votedFor int
    var baseLogIndex int
    var log []Entry
    _ = d.Decode(&currentTerm)
    _ = d.Decode(&votedFor)
    _ = d.Decode(&baseLogIndex)
    _ = d.Decode(&log)
    rf.currentTerm = currentTerm
    rf.votedFor = votedFor
    rf.baseLogIndex = baseLogIndex
    rf.log = log
    rf.lastApplied = rf.baseLogIndex
}

//
// A service wants to switch to snapshot.  Only do so if Raft hasn't
// have more recent info since it communicate the snapshot on applyCh.
//
func (rf *Raft) CondInstallSnapshot(lastIncludedTerm int, lastIncludedIndex int, snapshot []byte) bool {

    // Your code here (2D).

    return true
}

// the service says it has created a snapshot that has
// all info up to and including index. this means the
// service no longer needs the log through (and including)
// that index. Raft should now trim its log as much as possible.
func (rf *Raft) Snapshot(index int, snapshot []byte) {
    // Your code here (2D).
    // need another thread to use Lock, otherwise deadlock with applyCommitted.
    go func() {
        rf.mu.Lock()
        defer rf.mu.Unlock()

        rf.debugPrint("Start snapshot index: %d, lastApplied: %d, baseLogIndex: %d",
            index, rf.lastApplied, rf.baseLogIndex)
        if index > rf.lastApplied || index <= rf.baseLogIndex {
            return
        }
        localLogIndex := index - rf.baseLogIndex
        rf.log = rf.log[localLogIndex:]
        rf.baseLogIndex = index
        rf.persistWithSnapshot(snapshot)
        rf.debugPrint("after snapshot, baseLogIndex: %d", rf.baseLogIndex)
    }()
}

//
// example RequestVote RPC arguments structure.
// field names must start with capital letters!
//
type RequestVoteArgs struct {
    // Your data here (2A, 2B).
    CandidateId  int
    Term         int
    LastLogIndex int
    LastLogTerm  int
}

//
// example RequestVote RPC reply structure.
// field names must start with capital letters!
//
type RequestVoteReply struct {
    // Your data here (2A).
    Success bool
    Term    int
}
type AppendEntriesArgs struct {
    LeaderId     int
    Term         int
    LeaderCommit int
    PrevLogIndex int
    PrevLogTerm  int
    Entries      []Entry
}
type AppendEntriesReply struct {
    Success   bool
    Term      int
    NextIndex int
}
type InstallSnapshotArgs struct {
    LeaderId          int
    Term              int
    LastIncludedIndex int
    LastIncludedTerm  int
    Data              []byte
    // Done bool
    // offset int
}
type InstallSnapshotReply struct {
    Term int
}

//
// example RequestVote RPC handler.
//
func (rf *Raft) RequestVote(args *RequestVoteArgs, reply *RequestVoteReply) {
    // Your code here (2A, 2B).
    rf.mu.Lock()
    defer rf.mu.Unlock()
    rf.debugPrint("Receive vote: %v", args)
    if args.Term < rf.currentTerm {
        reply.Success = false
        reply.Term = rf.currentTerm
        rf.debugPrint("Reject vote, because args term is old: %v", args)
        return
    }

    if args.Term > rf.currentTerm {
        rf.currentTerm = args.Term
        rf.votedFor = -1
        rf.votedCount = 0
        rf.leaderId = -1
        rf.becomeFollower()
        rf.persist()
    }

    reply.Term = args.Term
    if rf.votedFor != -1 && rf.votedFor != args.CandidateId {
        reply.Success = false
        rf.debugPrint("Sorry, can't vote: %d, already voted for others.", args.CandidateId)
    } else if rf.logIsNewer(args.LastLogTerm, args.LastLogIndex) {
        reply.Success = false
        rf.debugPrint("Sorry, can't vote: %d, my log is newer.", args.CandidateId)
    } else {
        rf.grantedVote = true
        rf.votedFor = args.CandidateId
        rf.becomeFollower()
        rf.persist()
        reply.Success = true
        rf.debugPrint("Granted vote to %d.", args.CandidateId)
    }
}
func (rf *Raft) handleRequestVoteReply(reply RequestVoteReply) {
    rf.mu.Lock()
    defer rf.mu.Unlock()
    if reply.Success {
        if reply.Term == rf.currentTerm {
            rf.votedCount++
            if rf.votedCount > len(rf.peers)/2 && rf.role == CANDIDATE {
                rf.becomeLeader()
            }
        }
    } else {
        if reply.Term > rf.currentTerm {
            rf.currentTerm = reply.Term
            rf.votedFor = -1
            rf.votedCount = 0
            rf.leaderId = -1
            rf.becomeFollower()
            rf.persist()
        }
    }
}
func (rf *Raft) AppendEntries(args *AppendEntriesArgs, reply *AppendEntriesReply) {
    // Your code here (2A, 2B).
    rf.mu.Lock()
    defer rf.mu.Unlock()

    rf.debugPrint("Receive heartbeat: %v", args)
    if args.Term < rf.currentTerm {
        reply.Success = false
        reply.Term = rf.currentTerm
        reply.NextIndex = args.PrevLogIndex + 1
        rf.debugPrint("Old leader: %d, not your term, now.", args.LeaderId)
        return
    }

    rf.receivedHeartbeat = true
    rf.leaderId = args.LeaderId
    rf.becomeFollower()
    if args.Term > rf.currentTerm {
        rf.currentTerm = args.Term
        rf.votedFor = -1
        rf.persist()
    }
    myNextLogIndex := rf.genNextLogIndex()
    myLastLogIndex := myNextLogIndex - 1
    if myLastLogIndex < args.PrevLogIndex {
        reply.Success = false
        reply.Term = args.Term
        reply.NextIndex = myNextLogIndex
        rf.debugPrint("My log is too short, need more entries.")
        return
    }

    localLogIndex := args.PrevLogIndex - rf.baseLogIndex
    sameIndexLogEntry := rf.log[localLogIndex]
    if args.PrevLogTerm == sameIndexLogEntry.Term {
        if len(args.Entries) > 0 {
            if len(rf.log) > localLogIndex+1 {
                rf.log = rf.log[0 : localLogIndex+1]
            }
            rf.log = append(rf.log, copyEntryArr(args.Entries)...)
            rf.persist()
        }
        if args.LeaderCommit > rf.commitIndex {
            rf.commitIndex = min(args.LeaderCommit, rf.genNextLogIndex()-1)
            rf.applyCommitted()
        }
        reply.Success = true
        reply.Term = args.Term
        reply.NextIndex = rf.genNextLogIndex()
        if len(args.Entries) > 0 {
            rf.debugPrint("Append log from %d success.", args.LeaderId)
        } else {
            rf.debugPrint("No append entries, reply heartbeat to %d success.", args.LeaderId)
        }
    } else {
        // improve performance, skip all items with the same conflict term
        for localLogIndex > 0 && rf.log[localLogIndex-1].Term == sameIndexLogEntry.Term {
            localLogIndex--
        }
        reply.Success = false
        reply.Term = args.Term
        // Binary search to improve performance, it depends on the network, in normal situation, we don't need
        // binary search, because partition does not occur frequently. For test, like Figure8Unreliable, it works.
        reply.NextIndex = rf.baseLogIndex + (localLogIndex+1)/2
        rf.debugPrint("Can't append the entries, the prev term conflict, next index change to: %d.",
            reply.NextIndex)
    }
}
func (rf *Raft) handleAppendEntriesReply(serverId int, reply AppendEntriesReply) {
    rf.mu.Lock()
    defer rf.mu.Unlock()

    rf.debugPrint("Handle heartbeat reply from %d: %v", serverId, reply)
    rf.nextIndex[serverId] = reply.NextIndex
    if reply.Success {
        if reply.Term == rf.currentTerm && rf.role == LEADER {
            rf.matchIndex[serverId] = reply.NextIndex - 1
            rf.commitIndex = max(rf.commitIndex, rf.calculateCommitIndex())
            rf.applyCommitted()
        }
    } else {
        if reply.Term > rf.currentTerm {
            rf.currentTerm = reply.Term
            rf.votedFor = -1
            rf.votedCount = 0
            rf.leaderId = -1
            rf.becomeFollower()
            rf.persist()
        }
    }
}
func (rf *Raft) InstallSnapshot(args *InstallSnapshotArgs, reply *InstallSnapshotReply) {
    // Your code here (2A, 2B).
    rf.mu.Lock()
    defer rf.mu.Unlock()
    rf.debugPrint("Receive install snapshot: %v", args)
    if args.Term < rf.currentTerm {
        reply.Term = rf.currentTerm
        rf.debugPrint("Reject install snapshot, because args term is old: %v", args)
        return
    }

    if args.Term > rf.currentTerm {
        rf.currentTerm = args.Term
        rf.votedFor = -1
        rf.votedCount = 0
        rf.becomeFollower()
        rf.persist()
    }

    rf.leaderId = args.LeaderId
    reply.Term = args.Term
    if args.LastIncludedIndex <= rf.baseLogIndex {
        rf.debugPrint("Sorry, can't install snapshot from: %d, snapshot not newer, index: %d, my base index: %d",
            args.LeaderId, args.LastIncludedIndex, rf.baseLogIndex)
    } else {
        if args.LastIncludedIndex > rf.genNextLogIndex()-1 {
            rf.log = make([]Entry, 0)
            rf.log = append(rf.log, Entry{Term: args.LastIncludedTerm, Command: nil})
        } else {
            rf.log = rf.log[args.LastIncludedIndex-rf.baseLogIndex:]
        }
        rf.baseLogIndex = args.LastIncludedIndex
        rf.lastApplied = rf.baseLogIndex
        rf.persistWithSnapshot(args.Data)
        rf.debugPrint("Install snapshot from %d, last index: %d", args.LeaderId, args.LastIncludedIndex)

        applyMsg := ApplyMsg{
            CommandValid:  false,
            SnapshotValid: true,
            SnapshotIndex: args.LastIncludedIndex,
            SnapshotTerm:  args.LastIncludedTerm,
            Snapshot:      args.Data,
        }
        rf.chanApply <- applyMsg
        rf.debugPrint("Apply msg for snapshot from: %d, last index: %d", args.LeaderId, applyMsg.SnapshotIndex)
    }
}
func (rf *Raft) handleInstallSnapshotReply(reply InstallSnapshotReply) {
    rf.mu.Lock()
    defer rf.mu.Unlock()
    if reply.Term > rf.currentTerm {
        rf.currentTerm = reply.Term
        rf.votedFor = -1
        rf.votedCount = 0
        rf.leaderId = -1
        rf.becomeFollower()
        rf.persist()
    }
}
func (rf *Raft) becomeFollower() {
    if rf.role != FOLLOWER {
        rf.role = FOLLOWER
        rf.debugPrint("Become follower")
    }
}
func (rf *Raft) becomeCandidate() {
    rf.mu.Lock()
    defer rf.mu.Unlock()
    rf.role = CANDIDATE
    rf.leaderId = -1
    rf.votedFor = rf.me
    rf.votedCount = 1
    rf.currentTerm++
    rf.persist()
    rf.debugPrint("Become candidate")

    for serverId := range rf.peers {
        rf.debugPrint("Send vote to: %d", serverId)
        if serverId == rf.me {
            rf.grantedVote = true
        } else {
            args := RequestVoteArgs{
                Term:         rf.currentTerm,
                CandidateId:  rf.me,
                LastLogTerm:  rf.log[len(rf.log)-1].Term,
                LastLogIndex: rf.genNextLogIndex() - 1,
            }
            reply := RequestVoteReply{}
            go func(serverId int) {
                if rf.sendRequestVote(serverId, &args, &reply) {
                    rf.handleRequestVoteReply(reply)
                }
            }(serverId)
        }
    }
}
func (rf *Raft) becomeLeader() {
    rf.role = LEADER
    rf.leaderId = rf.me
    nextIndex := rf.genNextLogIndex()
    for serverId := range rf.peers {
        rf.nextIndex[serverId] = nextIndex
        rf.matchIndex[serverId] = 0
    }
    rf.debugPrint("Become leader")

    go rf.heartbeatLoop()
}
func (rf *Raft) heartbeatLoop() {
    for rf.killed() == false {
        rf.mu.Lock()
        if rf.role != LEADER {
            rf.mu.Unlock()
            return
        }
        for serverId := range rf.peers {
            if serverId == rf.me {
                rf.debugPrint("Send heartbeat to: %d, myself", serverId)
                rf.receivedHeartbeat = true
                nextIndex := rf.genNextLogIndex()
                rf.nextIndex[serverId] = nextIndex
                rf.matchIndex[serverId] = nextIndex - 1
            } else {
                // figure8 can't replicate log, if last log term != currentTerm
                var nextIndex int
                lastLogTerm := rf.log[len(rf.log)-1].Term
                if lastLogTerm != rf.currentTerm {
                    nextIndex = rf.genNextLogIndex()
                    rf.debugPrint("Send heartbeat to: %d, my term gets no new commands yet.", serverId)
                } else {
                    nextIndex = min(rf.genNextLogIndex(), rf.nextIndex[serverId])
                    if nextIndex > rf.baseLogIndex {
                        rf.debugPrint("Send heartbeat to: %d", serverId)
                    } else {
                        args := InstallSnapshotArgs{
                            Term:              rf.currentTerm,
                            LeaderId:          rf.me,
                            LastIncludedIndex: rf.baseLogIndex,
                            LastIncludedTerm:  rf.log[0].Term,
                            Data:              rf.persister.ReadSnapshot(),
                        }
                        reply := InstallSnapshotReply{}
                        go func(serverId int) {
                            if rf.sendInstallSnapshot(serverId, &args, &reply) {
                                rf.handleInstallSnapshotReply(reply)
                            }
                        }(serverId)
                        rf.debugPrint("Need read log back from snapshot.")
                        continue
                    }
                }
                args := AppendEntriesArgs{
                    Term:         rf.currentTerm,
                    LeaderId:     rf.me,
                    LeaderCommit: rf.commitIndex,
                    PrevLogIndex: nextIndex - 1,
                    PrevLogTerm:  rf.log[nextIndex-rf.baseLogIndex-1].Term,
                    Entries:      rf.log[nextIndex-rf.baseLogIndex:],
                }
                reply := AppendEntriesReply{}
                go func(serverId int) {
                    if rf.sendAppendEntries(serverId, &args, &reply) {
                        rf.handleAppendEntriesReply(serverId, reply)
                    }
                }(serverId)
            }
        }
        rf.mu.Unlock()
        time.Sleep(HEARTBEAT_INTERVAL)
    }
}

//
// example code to send a RequestVote RPC to a server.
// server is the index of the target server in rf.peers[].
// expects RPC arguments in args.
// fills in *reply with RPC reply, so caller should
// pass &reply.
// the types of the args and reply passed to Call() must be
// the same as the types of the arguments declared in the
// handler function (including whether they are pointers).
//
// The labrpc package simulates a lossy network, in which servers
// may be unreachable, and in which requests and replies may be lost.
// Call() sends a request and waits for a reply. If a reply arrives
// within a timeout interval, Call() returns true; otherwise
// Call() returns false. Thus Call() may not return for a while.
// A false return can be caused by a dead server, a live server that
// can't be reached, a lost request, or a lost reply.
//
// Call() is guaranteed to return (perhaps after a delay) *except* if the
// handler function on the server side does not return.  Thus there
// is no need to implement your own timeouts around Call().
//
// look at the comments in ../labrpc/labrpc.go for more details.
//
// if you're having trouble getting RPC to work, check that you've
// capitalized all field names in structs passed over RPC, and
// that the caller passes the address of the reply struct with &, not
// the struct itself.
//
func (rf *Raft) sendRequestVote(server int, args *RequestVoteArgs, reply *RequestVoteReply) bool {
    ok := rf.peers[server].Call("Raft.RequestVote", args, reply)
    return ok
}

func (rf *Raft) sendAppendEntries(server int, args *AppendEntriesArgs, reply *AppendEntriesReply) bool {
    ok := rf.peers[server].Call("Raft.AppendEntries", args, reply)
    return ok
}
func (rf *Raft) sendInstallSnapshot(server int, args *InstallSnapshotArgs, reply *InstallSnapshotReply) bool {
    ok := rf.peers[server].Call("Raft.InstallSnapshot", args, reply)
    return ok
}

//
// the service using Raft (e.g. a k/v server) wants to start
// agreement on the next command to be appended to Raft's log. if this
// server isn't the leader, returns false. otherwise start the
// agreement and return immediately. there is no guarantee that this
// command will ever be committed to the Raft log, since the leader
// may fail or lose an election. even if the Raft instance has been killed,
// this function should return gracefully.
//
// the first return value is the index that the command will appear at
// if it's ever committed. the second return value is the current
// term. the third return value is true if this server believes it is
// the leader.
//
func (rf *Raft) Start(command interface{}) (int, int, bool) {
    index := -1
    term := -1
    isLeader := false

    // Your code here (2B).
    rf.mu.Lock()
    defer rf.mu.Unlock()
    isLeader = rf.role == LEADER
    if isLeader {
        index = rf.genNextLogIndex()
        term = rf.currentTerm
        entry := Entry{Term: rf.currentTerm, Command: command}
        rf.log = append(rf.log, entry)
        rf.persist()
        rf.debugPrint("Start new command: %v", command)
    }
    return index, term, isLeader
}

//
// the tester doesn't halt goroutines created by Raft after each test,
// but it does call the Kill() method. your code can use killed() to
// check whether Kill() has been called. the use of atomic avoids the
// need for a lock.
//
// the issue is that long-running goroutines use memory and may chew
// up CPU time, perhaps causing later tests to fail and generating
// confusing debug output. any goroutine with a long-running loop
// should call killed() to check whether it should stop.
//
func (rf *Raft) Kill() {
    atomic.StoreInt32(&rf.dead, 1)
    // Your code here, if desired.
}

func (rf *Raft) killed() bool {
    z := atomic.LoadInt32(&rf.dead)
    return z == 1
}

// The ticker go routine starts a new election if this peer hasn't received
// heartsbeats recently.
func (rf *Raft) ticker() {
    for rf.killed() == false {

        // Your code here to check if a leader election should
        // be started and to randomize sleeping time using
        // time.Sleep().
        time.Sleep(rf.getRandElectTimeout())
        rf.mu.Lock()
        if rf.receivedHeartbeat {
            rf.receivedHeartbeat = false
            //rf.debugPrint("received heartbeat, leader is alive, don't elect.")
        } else if rf.grantedVote {
            rf.grantedVote = false
            //rf.debugPrint("granted vote, don't elect.")
        } else {
            go rf.becomeCandidate()
        }
        rf.mu.Unlock()
    }
}

func (rf *Raft) debugPrint(format string, args ...interface{}) {
    DPrintf(fmt.Sprintf("id:%d,term:%d,role:%d,l:%d,v:%d,commit:%d,apply:%d,base:%d,match:%v,next:%v,log:%v  msg: %s",
        rf.me, rf.currentTerm, rf.role, rf.leaderId, rf.votedFor, rf.commitIndex, rf.lastApplied, rf.baseLogIndex,
        rf.matchIndex, rf.nextIndex, rf.log, format), args...)
}

func (rf *Raft) genNextLogIndex() int {
    return rf.baseLogIndex + len(rf.log)
}

func (rf *Raft) getRandElectTimeout() time.Duration {
    return ELECT_TIMEOUT_MIN +
        time.Duration(rand.Intn(int((ELECT_TIMEOUT_MAX-ELECT_TIMEOUT_MIN)/time.Millisecond)))*time.Millisecond
}

func (rf *Raft) logIsNewer(candidateLogTerm int, candidateLogIndex int) bool {
    myLogTerm := rf.log[len(rf.log)-1].Term
    if myLogTerm != candidateLogTerm {
        return myLogTerm > candidateLogTerm
    } else {
        myLogIndex := rf.genNextLogIndex() - 1
        return myLogIndex > candidateLogIndex
    }
}

func (rf *Raft) applyCommitted() {
    for rf.commitIndex > rf.lastApplied {
        localLogIndex := rf.lastApplied + 1 - rf.baseLogIndex
        applyMsg := ApplyMsg{
            Command:      rf.log[localLogIndex].Command,
            CommandIndex: rf.lastApplied + 1,
            CommandValid: true,
        }
        rf.chanApply <- applyMsg
        rf.lastApplied++
        rf.debugPrint("Apply msg for command: %v", applyMsg)
    }
}

func (rf *Raft) calculateCommitIndex() int {
    beforeMid := (len(rf.peers) - 1) / 2
    matchIndexCopy := copyIntArr(rf.matchIndex)
    sort.Ints(matchIndexCopy)
    return matchIndexCopy[beforeMid]
}

func copyIntArr(arr []int) []int {
    arrCopy := make([]int, len(arr))
    copy(arrCopy, arr)
    return arrCopy
}

func copyEntryArr(arr []Entry) []Entry {
    arrCopy := make([]Entry, len(arr))
    copy(arrCopy, arr)
    return arrCopy
}

func max(a int, b int) int {
    if a > b {
        return a
    } else {
        return b
    }
}
func min(a int, b int) int {
    if a < b {
        return a
    } else {
        return b
    }
}

//
// the service or tester wants to create a Raft server. the ports
// of all the Raft servers (including this one) are in peers[]. this
// server's port is peers[me]. all the servers' peers[] arrays
// have the same order. persister is a place for this server to
// save its persistent state, and also initially holds the most
// recent saved state, if any. applyCh is a channel on which the
// tester or service expects Raft to send ApplyMsg messages.
// Make() must return quickly, so it should start goroutines
// for any long-running work.
//
func Make(peers []*labrpc.ClientEnd, me int,
    persister *Persister, applyCh chan ApplyMsg) *Raft {
    rf := &Raft{}
    rf.peers = peers
    rf.persister = persister
    rf.me = me

    // Your initialization code here (2A, 2B, 2C).
    rand.Seed(time.Now().UnixNano())
    rf.chanApply = applyCh
    rf.dead = 0

    rf.currentTerm = 0
    rf.votedFor = -1
    rf.log = make([]Entry, 0)
    rf.log = append(rf.log, Entry{Term: 0, Command: nil})

    rf.role = FOLLOWER
    rf.leaderId = -1
    rf.votedCount = 0
    rf.receivedHeartbeat = false
    rf.grantedVote = false
    rf.baseLogIndex = 0
    rf.nextIndex = make([]int, len(peers))
    rf.matchIndex = make([]int, len(peers))
    rf.commitIndex = 0
    rf.lastApplied = 0

    // initialize from state persisted before a crash
    rf.readPersist(persister.ReadRaftState())

    // start ticker goroutine to start elections
    go rf.ticker()

    return rf
}

我的执行结果

Test (2A): initial election ...
... Passed -- 3.0 3 84 21300 0
Test (2A): election after network failure ...
... Passed -- 4.6 3 156 30024 0
Test (2A): multiple elections ...
... Passed -- 6.0 7 816 156260 0
Test (2B): basic agreement ...
... Passed -- 0.6 3 16 4078 3
Test (2B): RPC byte count ...
... Passed -- 1.7 3 48 112826 11
Test (2B): agreement after follower reconnects ...
... Passed -- 5.7 3 158 39113 7
Test (2B): no agreement if too many followers disconnect ...
... Passed -- 3.4 5 232 47462 3
Test (2B): concurrent Start()s ...
... Passed -- 0.6 3 16 4094 6
Test (2B): rejoin of partitioned leader ...
... Passed -- 6.4 3 254 57971 4
Test (2B): leader backs up quickly over incorrect follower logs ...
... Passed -- 21.2 5 2264 1722320 102
Test (2B): RPC counts aren't too high ...
... Passed -- 2.2 3 58 15322 12
Test (2C): basic persistence ...
... Passed -- 3.6 3 104 24614 6
Test (2C): more persistence ...
... Passed -- 15.6 5 1152 238836 16
Test (2C): partitioned leader and one follower crash, leader restarts ...
... Passed -- 1.5 3 38 9224 4
Test (2C): Figure 8 ...
... Passed -- 27.7 5 844 159399 21
Test (2C): unreliable agreement ...
... Passed -- 4.2 5 224 72989 246
Test (2C): Figure 8 (unreliable) ...
... Passed -- 43.9 5 5120 9238145 424
Test (2C): churn ...
... Passed -- 16.5 5 904 617927 497
Test (2C): unreliable churn ...
... Passed -- 16.3 5 708 167976 157
Test (2D): snapshots basic ...
... Passed -- 5.2 3 142 46258 211
Test (2D): install snapshots (disconnect) ...
... Passed -- 85.4 3 2374 1014944 351
Test (2D): install snapshots (disconnect+unreliable) ...
... Passed -- 107.8 3 2978 1237609 359
Test (2D): install snapshots (crash) ...
... Passed -- 72.5 3 1800 689554 324
Test (2D): install snapshots (unreliable+crash) ...
... Passed -- 88.4 3 2216 938538 363
Test (2D): crash and restart all servers ...
... Passed -- 9.3 3 250 66712 56
PASS
ok 6.824/raft 553.424s

posted @ 2023-02-18 15:17  yangwen0228  阅读(116)  评论(0编辑  收藏  举报