Spark学习笔记(2)---Spark消息通信源码分析

Spark消息通信

Spark启动消息通信

Spark启动过程中主要是进行Master和Worker之间的通信,其消息发送关系如下,首先由worker节点向Master发送注册消息,然后Master处理完毕后,返回注册成功消息或失败消息。

其详细过程如下:
(1) 当Master启动后,随之启动各Worker,Worker启动时会创建通信环境RpcEnv和终端点EndPoint,并向Master发送注册Worker的消息RegisterWorker.Worker.tryRegisterAllMasters方法如下:
``` scala // 因为Master可能不止一个 private def tryRegisterAllMasters(): Array[JFuture[_]] = { masterRpcAddresses.map { masterAddress => registerMasterThreadPool.submit(new Runnable { override def run(): Unit = { try { logInfo("Connecting to master " + masterAddress + "...") // 获取Master终端点的引用 val masterEndpoint = rpcEnv.setupEndpointRef(masterAddress, Master.ENDPOINT_NAME) registerWithMaster(masterEndpoint) } catch {} ... }

private def registerWithMaster(masterEndpoint: RpcEndpointRef): Unit = {
// 根据Master节点的引用发送注册信息
masterEndpoint.ask[RegisterWorkerResponse](RegisterWorker(
workerId, host, port, self, cores, memory, workerWebUiUrl))
.onComplete {
// 返回注册成功或失败的结果
// This is a very fast action so we can use "ThreadUtils.sameThread"
case Success(msg) =>
Utils.tryLogNonFatalError {handleRegisterResponse(msg)}
case Failure(e) =>
logError(s"Cannot register with master: ${masterEndpoint.address}", e)
System.exit(1)
}(ThreadUtils.sameThread)
}

(2) Master收到消息后,需要对Worker发送的信息进行验证、记录。如果注册成功,则发送RegisteredWorker消息给对应的Worker,告诉Worker已经完成注册,
随之进行步骤3,即Worker定期发送心跳给Master;如果注册过程中失败,则会发送RegisterWorkerFailed消息,Woker打印出错日志并结束Worker启动。Master.receiverAndReply方法如下:</br>
``` scala
override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
  case RegisterWorker(
      id, workerHost, workerPort, workerRef, cores, memory, workerWebUiUrl) =>
    logInfo("Registering worker %s:%d with %d cores, %s RAM".format(
      workerHost, workerPort, cores, Utils.megabytesToString(memory)))
    // Master处于STANDBY状态
    if (state == RecoveryState.STANDBY) {
      context.reply(MasterInStandby)
    } else if (idToWorker.contains(id)) { // 在注册列表中发现了该Worker节点
      context.reply(RegisterWorkerFailed("Duplicate worker ID"))
    } else {
      val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory,
        workerRef, workerWebUiUrl)
      // registerWorker方法会把Worker放到注册列表中
      if (registerWorker(worker)) {
        persistenceEngine.addWorker(worker)
        context.reply(RegisteredWorker(self, masterWebUiUrl))
        schedule()
      } else {
        val workerAddress = worker.endpoint.address
        logWarning("Worker registration failed. Attempted to re-register worker at same " +
          "address: " + workerAddress)
        context.reply(RegisterWorkerFailed("Attempted to re-register worker at same address: "
          + workerAddress))
      }
    }
   
   ...
}

(3) 当Worker接收到注册成功后,会定时发送心跳信息Heartbeat给Master,以便Master了解Worker的实时状态。间隔时间可以在spark.worker.timeout中设置,注意,该设置值的1/4为心跳间隔。

Spark运行时消息通信

用户提交应用程序时,应用程序的SparkContext会向Master发送注册应用信息,并由Master给该应用分配Executor,Executor启动后会向SparkContext发送注册成功消息;当SparkContext的RDD触发行动操作后,通过DAGScheduler进行划分stage,并将stage
转化为TaskSet,接着由TaskScheduler向注册的Executor发送执行消息,Executor接收到任务消息后启动并运行;最后当所有任务运行时,由Driver处理结果并回收资源。如下图所示:
Spark启动过程中主要是进行Master和Worker之间的通信,其消息发送关系如下,首先由worker节点向Master发送注册消息,然后Master处理完毕后,返回注册成功消息或失败消息。

其详细过程如下:
(1) 在SparkContext创建过程中会先实例化SchedulerBackend对象,standalone模式中实际创建的是StandaloneSchedulerBackend对象,在该对象启动过程中会继承父类DriverEndpoint和创建StandaloneAppClient的ClientEndpoint两个终端点。 在ClientEndpoint的tryRegisterAllMasters方法中创建注册线程池registerMasterThreadPool, 在该线程池中启动注册线程并向Master发送RegisterApplication注册应用的消息,代码如下: ``` scala private def tryRegisterAllMasters(): Array[JFuture[_]] = { // 遍历所有的Master, 这是一个for推导式,会构造会一个集合 for (masterAddress <- masterRpcAddresses) yield { // 在线程池中启动注册线程,当该线程读到应用注册成功标识registered==true时退出注册线程 registerMasterThreadPool.submit(new Runnable { override def run(): Unit = try { if (registered.get) { // private val registered = new AtomicBoolean(false) 原子类型 return } logInfo("Connecting to master " + masterAddress.toSparkURL + "...") val masterRef = rpcEnv.setupEndpointRef(masterAddress, Master.ENDPOINT_NAME) // 发送注册消息 masterRef.send(RegisterApplication(appDescription, self)) } catch {...} }) } } ``` 当Master接收到注册应用消息时,在registerApplication方法中记录应用信息并把该应用加入到等待运行列表中,发送注册成功消息 RegisteredApplication给ClientEndpoint,同时调用startExecutorsOnWorkers方法运行应用。Master.startExecutorsOnWorkers方法代码如下: ``` scala case RegisterApplication(description, driver) => // TODO Prevent repeated registrations from some driver if (state == RecoveryState.STANDBY) { // ignore, don't send response } else { logInfo("Registering app " + description.name) val app = createApplication(description, driver) registerApplication(app) logInfo("Registered app " + description.name + " with ID " + app.id) // 使用持久化引擎,将Application进行持久化 persistenceEngine.addApplication(app) driver.send(RegisteredApplication(app.id, self)) schedule() }

private def schedule(): Unit = {
if (state != RecoveryState.ALIVE) {
return
}
// 对Worker节点进行随机排序
val shuffledAliveWorkers = Random.shuffle(workers.toSeq.filter(_.state == WorkerState.ALIVE))
val numWorkersAlive = shuffledAliveWorkers.size
var curPos = 0
// 按照顺序在集群中启动Driver,Driver尽量在不同的Worker节点上运行
for (driver <- waitingDrivers.toList) {
var launched = false
var numWorkersVisited = 0
while (numWorkersVisited < numWorkersAlive && !launched) {
val worker = shuffledAliveWorkers(curPos)
numWorkersVisited += 1
if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) {
launchDriver(worker, driver)
waitingDrivers -= driver
launched = true
}
curPos = (curPos + 1) % numWorkersAlive
}
}
startExecutorsOnWorkers()
}

private def startExecutorsOnWorkers(): Unit = {
// 使用FIFO算法运行应用,即先注册的应用先运行
for (app <- waitingApps if app.coresLeft > 0) {
val coresPerExecutor: Option[Int] = app.desc.coresPerExecutor
// Filter out workers that don't have enough resources to launch an executor
val usableWorkers = workers.toArray.filter(.state == WorkerState.ALIVE)
.filter(worker => worker.memoryFree >= app.desc.memoryPerExecutorMB &&
worker.coresFree >= coresPerExecutor.getOrElse(1))
.sortBy(
.coresFree).reverse
// 一种是spreadOutApps,就是把应用运行在尽量多的Worker上,另一种是非spreadOutApps
val assignedCores = scheduleExecutorsOnWorkers(app, usableWorkers, spreadOutApps)

  // Now that we've decided how many cores to allocate on each worker, let's allocate them
  // 给每个worker分配完application要求的cpu core之后,遍历worker启动executor
  for (pos <- 0 until usableWorkers.length if assignedCores(pos) > 0) {
    allocateWorkerResourceToExecutors(
      app, assignedCores(pos), coresPerExecutor, usableWorkers(pos))
  }
}

}

</br>
(2) StandaloneAppClient.ClientEndpoint接收到Master发送的RegisteredApplication消息,需要把注册标识registered置为true。代码如下:
``` scala
case RegisteredApplication(appId_, masterRef) =>
    appId.set(appId_)
    registered.set(true)
    master = Some(masterRef)
    listener.connected(appId.get)

(3) 在Master类的starExecutorsOnWorkers方法中分配资源运行应用程序时,调用allocateWorkerResourceToExecutors方法实现在Worker中启动Executor。当
Worker收到Master发送过来的LaunchExecutor消息,先实例化ExecutorRunner对象,在ExecutorRunner启动中会创建进程生成器ProcessBuilder, 然后由该生成器使用command
创建CoarseGrainedExecutorBackend对象,该对象是Executor运行的容器,最后Worker发送ExecutorStateChanged消息给Master,通知Executor容器已经创建完毕。

case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>
  if (masterUrl != activeMasterUrl) {
    logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.")
  } else {
    try {
      logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name))

      // 创建executor执行目录
      val executorDir = new File(workDir, appId + "/" + execId)
      if (!executorDir.mkdirs()) {
        throw new IOException("Failed to create directory " + executorDir)
      }

      // 创建executor本地目录,当应用程序结束后由worker删除
      val appLocalDirs = appDirectories.getOrElse(appId,
        Utils.getOrCreateLocalRootDirs(conf).map { dir =>
          val appDir = Utils.createDirectory(dir, namePrefix = "executor")
          Utils.chmod700(appDir)
          appDir.getAbsolutePath()
        }.toSeq)
      appDirectories(appId) = appLocalDirs
      
      // 在ExecutorRunner中创建CoarseGrainedExecutorBackend对象,创建的是使用应用信息中的command,而command在
      // StandaloneSchedulerBackend的start方法中构建
      val manager = new ExecutorRunner(appId,execId,appDesc.copy(command = Worker.maybeUpdateSSLSettings(appDesc.command, conf)),
        cores_,memory_,self,workerId,host,webUi.boundPort,publicAddress,sparkHome,executorDir,workerUri,conf,
        appLocalDirs, ExecutorState.RUNNING)
      executors(appId + "/" + execId) = manager
      manager.start() // 启动ExecutorRunner
      coresUsed += cores_
      memoryUsed += memory_
      sendToMaster(ExecutorStateChanged(appId, execId, manager.state, None, None))
    } catch {...}
  }

在ExecutorRunner创建中调用了fetchAndRunExecutor方法进行实现,在该方法中command内容在StandaloneSchedulerBackend中定义,指定构造Executor运行容器CoarseGrainedExecutorBacken,
代码如下:

private def fetchAndRunExecutor() {
    try {
      // 通过应用程序信息和环境配置创建构造器builder
      val builder = CommandUtils.buildProcessBuilder(appDesc.command, new SecurityManager(conf),
        memory, sparkHome.getAbsolutePath, substituteVariables)
      val command = builder.command()
      val formattedCommand = command.asScala.mkString("\"", "\" \"", "\"")
      logInfo(s"Launch command: $formattedCommand")

      // 在构造器builder中添加执行目录等信息
      builder.directory(executorDir)
      builder.environment.put("SPARK_EXECUTOR_DIRS", appLocalDirs.mkString(File.pathSeparator))
      builder.environment.put("SPARK_LAUNCH_WITH_SCALA", "0")

      // Add webUI log urls
      val baseUrl =
        s"http://$publicAddress:$webUiPort/logPage/?appId=$appId&executorId=$execId&logType="
      builder.environment.put("SPARK_LOG_URL_STDERR", s"${baseUrl}stderr")
      builder.environment.put("SPARK_LOG_URL_STDOUT", s"${baseUrl}stdout")

      // 启动构造器,创建CoarseGrainedExecutorBackend实例
      process = builder.start()
      val header = "Spark Executor Command: %s\n%s\n\n".format(
        formattedCommand, "=" * 40)

      // 输出CoarseGrainedExecutorBackend实例运行信息
      val stdout = new File(executorDir, "stdout")
      stdoutAppender = FileAppender(process.getInputStream, stdout, conf)
      val stderr = new File(executorDir, "stderr")
      Files.write(header, stderr, StandardCharsets.UTF_8)
      stderrAppender = FileAppender(process.getErrorStream, stderr, conf)

      // 等待CoarseGrainedExecutorBackend运行结束,当结束时向Worker发送退出状态信息
      val exitCode = process.waitFor() 
      state = ExecutorState.EXITED
      val message = "Command exited with code " + exitCode
      worker.send(ExecutorStateChanged(appId, execId, state, Some(message), Some(exitCode)))
    } catch {...}
  }

(4) Master接收到Worker发送的ExecutorStateChanged消息,代码如下:

case ExecutorStateChanged(appId, execId, state, message, exitStatus) =>
  // 找到executor对应的app,然后flatMap,通过app内部的缓存获取executor信息
  val execOption = idToApp.get(appId).flatMap(app => app.executors.get(execId))
  execOption match {
    case Some(exec) =>
      // 设置executor的当前状态
      val appInfo = idToApp(appId)
      val oldState = exec.state
      exec.state = state

      if (state == ExecutorState.RUNNING) {
        assert(oldState == ExecutorState.LAUNCHING,
          s"executor $execId state transfer from $oldState to RUNNING is illegal")
        appInfo.resetRetryCount()
      }
      // 向Driver发送ExecutorUpdated消息
      exec.application.driver.send(ExecutorUpdated(execId, state, message, exitStatus, false))
      ...

(5) 在3中的CoarseGrainedExecutorBackend启动方法onStart中,会发送注册Executor消息RegisterExecutor给DriverEndpoint,DriverEndpoint先判断该Executor是否已经注册,在makeOffers()方法
中分配运行任务资源,最后发送LaunchTask消息执行任务。

case RegisterExecutor(executorId, executorRef, hostname, cores, logUrls) =>
    if (executorDataMap.contains(executorId)) {
      executorRef.send(RegisterExecutorFailed("Duplicate executor ID: " + executorId))
      context.reply(true)
    } else {
      ...
      // 记录executor编号以及该executor需要使用的核数
      addressToExecutorId(executorAddress) = executorId
      totalCoreCount.addAndGet(cores)
      totalRegisteredExecutors.addAndGet(1)
      val data = new ExecutorData(executorRef, executorRef.address, hostname,
        cores, cores, logUrls)
      // 创建executor编号和其具体信息的键值列表
      CoarseGrainedSchedulerBackend.this.synchronized {
        executorDataMap.put(executorId, data)
        if (currentExecutorIdCounter < executorId.toInt) {
          currentExecutorIdCounter = executorId.toInt
        }
        if (numPendingExecutors > 0) {
          numPendingExecutors -= 1
          logDebug(s"Decremented number of pending executors ($numPendingExecutors left)")
        }
      }
      // 回复Executor完成注册消息并在监听总线中加入添加executor事件
      executorRef.send(RegisteredExecutor)
      context.reply(true)
      listenerBus.post(
        SparkListenerExecutorAdded(System.currentTimeMillis(), executorId, data))
      // 分配运行任务资源并发送LaunchTask消息执行任务
      makeOffers()
    }

(6) CoarseGrainedExecutorBackend接收到Executor注册成功RegisteredExecutor消息时,在CoarseGrainedExecutorBackend容器中实例化
Executor对象。启动完毕后,会定时向Driver发送心跳信息, 等待接收从DriverEndpoint发送执行任务的消息。CoarseGrainedExecutorBackend处理注册成功代码如下:

// 向driver注册成功了,返回RegisteredExecutor消息
case RegisteredExecutor =>
  logInfo("Successfully registered with driver")
  try {
    // 新建Executor, 该Executor会定时向Driver发送心跳信息,等待Driver下发任务
    executor = new Executor(executorId, hostname, env, userClassPath, isLocal = false)
  } catch {...}

(7) CoarseGrainedExecutorBackend的Executor启动后接收从DriverEndpoint发送的LaunchTask执行任务消息,任务执行是在Executor的launchTask方法实现的。在执行时会创建TaskRunner进程,由该进程进行任务处理,
处理完毕后发送StateUpdate消息返回给CoarseGrainedExecutorBackend。任务执行和获取结果见后😊

def launchTask(context: ExecutorBackend,taskId: Long,
      attemptNumber: Int,taskName: String,serializedTask: ByteBuffer): Unit = {
    // 对于每一个task创建一个TaskRunner
    val tr = new TaskRunner(context, taskId = taskId, attemptNumber = attemptNumber, taskName,serializedTask)
    // 将taskRunner放入内存缓存
    runningTasks.put(taskId, tr)
    // 将taskRunner放入线程池中,会自动排队
    threadPool.execute(tr)
  }

(8) 在TaskRunner执行任务完成时,会向DriverEndpoint发送StatusUpdate消息,DriverEndpoint接收到消息会调用TaskSchedulerImpl的statusUpdate方法,根据任务执行不同的结果处理,处理完毕后再给该Executor分配执行任务。代码如下:

case StatusUpdate(executorId, taskId, state, data) =>
    // 调用TaskSchedulerImpl的statusUpdate方法,根据任务执行不同的结果处理
    scheduler.statusUpdate(taskId, state, data.value)
    if (TaskState.isFinished(state)) {
      executorDataMap.get(executorId) match {
        // 任务执行成功后,回收该Executor运行该任务的CPU,再根据实际情况分配任务
        case Some(executorInfo) =>
          executorInfo.freeCores += scheduler.CPUS_PER_TASK
          makeOffers(executorId)
        case None => ...
      }
    }
posted @ 2017-07-06 13:23  杨同不爱吃洋葱  阅读(1849)  评论(0编辑  收藏  举报