利用python深度学习算法来绘图


可以画画啊!可以画画啊!可以画画啊! 对,有趣的事情需要讲三遍。 事情是这样的,通过python的深度学习算法包去训练计算机模仿世界名画的风格,然后应用到另一幅画中,不多说直接上图!


这个是世界名画”毕加索的自画像“(我也不懂什么是世界名画,但是我会google呀哈哈),以这张图片为模板,让计算机去学习这张图片的风格(至于怎么学习请参照这篇国外大牛的论文)应用到自己的这张图片上。

结果就变成下面这个样子了


咦,吓死宝宝了,不过好玩的东西当然要身先士卒啦! 接着由于距离开学也越来越近了,为了给广大新生营造一个良好的校园,噗!为了美化校园在新生心目中的形象学长真的不是有意要欺骗你们的。特意制作了下面的《梵高笔下的东华理工大学》,是不是没有听说过这个大学,的确她就是一个普通的二本学校不过这都不是重点。 左边的图片是梵高的《星空》作为模板,中间的图片是待转化的图片,右边的图片是结果

这是我们学校的内“湖”(池塘)

校园里的樱花广场(个人觉得这是我校最浪漫的地方了)

不多说,学校图书馆

“池塘”边的柳树

学校东大门

学校测绘楼

学校地学楼

为了便于观看,附上生成后的大图:








别看才区区七张图片,可是这让计算机运行了好长的时间,期间电脑死机两次!

好了广告打完了,下面是福利时间

在本地用keras搭建风格转移平台

1.相关依赖库的安装

# 命令行安装keras、h5py、tensorflow
pip3 install keras
pip3 install h5py
pip3 install tensorflow

如果tensorflowan命令行安装失败,可以在这里下载whl包Python Extension Packages for Windows(进入网址后ctrl+F输入tensorflow可以快速搜索)

2.配置运行环境

下载VGG16模型 放入如下目录当中

3.代码编写

from __future__ import print_function
from keras.preprocessing.image import load_img, img_to_array
from scipy.misc import imsave
import numpy as np
from scipy.optimize import fmin_l_bfgs_b
import time
import argparse

from keras.applications import vgg16
from keras import backend as K

parser = argparse.ArgumentParser(description='Neural style transfer with Keras.')
parser.add_argument('base_image_path', metavar='base', type=str,
                    help='Path to the image to transform.')
parser.add_argument('style_reference_image_path', metavar='ref', type=str,
                    help='Path to the style reference image.')
parser.add_argument('result_prefix', metavar='res_prefix', type=str,
                    help='Prefix for the saved results.')
parser.add_argument('--iter', type=int, default=10, required=False,
                    help='Number of iterations to run.')
parser.add_argument('--content_weight', type=float, default=0.025, required=False,
                    help='Content weight.')
parser.add_argument('--style_weight', type=float, default=1.0, required=False,
                    help='Style weight.')
parser.add_argument('--tv_weight', type=float, default=1.0, required=False,
                    help='Total Variation weight.')

args = parser.parse_args()
base_image_path = args.base_image_path
style_reference_image_path = args.style_reference_image_path
result_prefix = args.result_prefix
iterations = args.iter

# these are the weights of the different loss components
total_variation_weight = args.tv_weight
style_weight = args.style_weight
content_weight = args.content_weight

# dimensions of the generated picture.
width, height = load_img(base_image_path).size
img_nrows = 400
img_ncols = int(width * img_nrows / height)

# util function to open, resize and format pictures into appropriate tensors


def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_nrows, img_ncols))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img

# util function to convert a tensor into a valid image


def deprocess_image(x):
    if K.image_data_format() == 'channels_first':
        x = x.reshape((3, img_nrows, img_ncols))
        x = x.transpose((1, 2, 0))
    else:
        x = x.reshape((img_nrows, img_ncols, 3))
    # Remove zero-center by mean pixel
    x[:, :, 0] += 103.939
    x[:, :, 1] += 116.779
    x[:, :, 2] += 123.68
    # 'BGR'->'RGB'
    x = x[:, :, ::-1]
    x = np.clip(x, 0, 255).astype('uint8')
    return x

# get tensor representations of our images
base_image = K.variable(preprocess_image(base_image_path))
style_reference_image = K.variable(preprocess_image(style_reference_image_path))

# this will contain our generated image
if K.image_data_format() == 'channels_first':
    combination_image = K.placeholder((1, 3, img_nrows, img_ncols))
else:
    combination_image = K.placeholder((1, img_nrows, img_ncols, 3))

# combine the 3 images into a single Keras tensor
input_tensor = K.concatenate([base_image,
                              style_reference_image,
                              combination_image], axis=0)

# build the VGG16 network with our 3 images as input
# the model will be loaded with pre-trained ImageNet weights
model = vgg16.VGG16(input_tensor=input_tensor,
                    weights='imagenet', include_top=False)
print('Model loaded.')

# get the symbolic outputs of each "key" layer (we gave them unique names).
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])

# compute the neural style loss
# first we need to define 4 util functions

# the gram matrix of an image tensor (feature-wise outer product)


def gram_matrix(x):
    assert K.ndim(x) == 3
    if K.image_data_format() == 'channels_first':
        features = K.batch_flatten(x)
    else:
        features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1)))
    gram = K.dot(features, K.transpose(features))
    return gram

# the "style loss" is designed to maintain
# the style of the reference image in the generated image.
# It is based on the gram matrices (which capture style) of
# feature maps from the style reference image
# and from the generated image


def style_loss(style, combination):
    assert K.ndim(style) == 3
    assert K.ndim(combination) == 3
    S = gram_matrix(style)
    C = gram_matrix(combination)
    channels = 3
    size = img_nrows * img_ncols
    return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2))

# an auxiliary loss function
# designed to maintain the "content" of the
# base image in the generated image


def content_loss(base, combination):
    return K.sum(K.square(combination - base))

# the 3rd loss function, total variation loss,
# designed to keep the generated image locally coherent


def total_variation_loss(x):
    assert K.ndim(x) == 4
    if K.image_data_format() == 'channels_first':
        a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, 1:, :img_ncols - 1])
        b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, :img_nrows - 1, 1:])
    else:
        a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :])
        b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :])
    return K.sum(K.pow(a + b, 1.25))

# combine these loss functions into a single scalar
loss = K.variable(0.)
layer_features = outputs_dict['block4_conv2']
base_image_features = layer_features[0, :, :, :]
combination_features = layer_features[2, :, :, :]
loss += content_weight * content_loss(base_image_features,
                                      combination_features)

feature_layers = ['block1_conv1', 'block2_conv1',
                  'block3_conv1', 'block4_conv1',
                  'block5_conv1']
for layer_name in feature_layers:
    layer_features = outputs_dict[layer_name]
    style_reference_features = layer_features[1, :, :, :]
    combination_features = layer_features[2, :, :, :]
    sl = style_loss(style_reference_features, combination_features)
    loss += (style_weight / len(feature_layers)) * sl
loss += total_variation_weight * total_variation_loss(combination_image)

# get the gradients of the generated image wrt the loss
grads = K.gradients(loss, combination_image)

outputs = [loss]
if isinstance(grads, (list, tuple)):
    outputs += grads
else:
    outputs.append(grads)

f_outputs = K.function([combination_image], outputs)


def eval_loss_and_grads(x):
    if K.image_data_format() == 'channels_first':
        x = x.reshape((1, 3, img_nrows, img_ncols))
    else:
        x = x.reshape((1, img_nrows, img_ncols, 3))
    outs = f_outputs([x])
    loss_value = outs[0]
    if len(outs[1:]) == 1:
        grad_values = outs[1].flatten().astype('float64')
    else:
        grad_values = np.array(outs[1:]).flatten().astype('float64')
    return loss_value, grad_values

# this Evaluator class makes it possible
# to compute loss and gradients in one pass
# while retrieving them via two separate functions,
# "loss" and "grads". This is done because scipy.optimize
# requires separate functions for loss and gradients,
# but computing them separately would be inefficient.


class Evaluator(object):

    def __init__(self):
        self.loss_value = None
        self.grads_values = None

    def loss(self, x):
        assert self.loss_value is None
        loss_value, grad_values = eval_loss_and_grads(x)
        self.loss_value = loss_value
        self.grad_values = grad_values
        return self.loss_value

    def grads(self, x):
        assert self.loss_value is not None
        grad_values = np.copy(self.grad_values)
        self.loss_value = None
        self.grad_values = None
        return grad_values

evaluator = Evaluator()

# run scipy-based optimization (L-BFGS) over the pixels of the generated image
# so as to minimize the neural style loss
if K.image_data_format() == 'channels_first':
    x = np.random.uniform(0, 255, (1, 3, img_nrows, img_ncols)) - 128.
else:
    x = np.random.uniform(0, 255, (1, img_nrows, img_ncols, 3)) - 128.

for i in range(iterations):
    print('Start of iteration', i)
    start_time = time.time()
    x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(),
                                     fprime=evaluator.grads, maxfun=20)
    print('Current loss value:', min_val)
    # save current generated image
    img = deprocess_image(x.copy())
    fname = result_prefix + '_at_iteration_%d.png' % i
    imsave(fname, img)
    end_time = time.time()
    print('Image saved as', fname)
print('Iteration %d completed in %ds' % (i, end_time - start_time))

复制上述代码保存为neural_style_transfer.py(随便命名)

4.运行

新建一个空文件夹,把上一步骤的文件neural_style_transfer.py放入这个空文件夹中。然后把相应的模板图片,待转化图片放入该文件当中。

python neural_style_transfer.py   你的待转化图片路径    模板图片路径   保存的生产图片路径加名称注意不需要有.jpg等后缀python neural_style_transfer.py './me.jpg' './starry_night.jpg' './me_t'

迭代结果截图:

迭代过程对比


其它库实现风格转化

基于python深度学习库DeepPy的实现:GitHub - andersbll/neural_artistic_style: Neural Artistic Style in Python

基于python深度学习库TensorFlow的实现:GitHub - anishathalye/neural-style: Neural style in TensorFlow!

基于python深度学习库Caffe的实现:

 

posted @ 2017-10-26 22:39  幻维天  阅读(1122)  评论(0编辑  收藏  举报