Flink之CEP(Complex Event Processing,复杂事件处理)的使用

需要在pom导入对应的依赖,如下所示:

<!-- flink中的CEP -->
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-cep-scala_2.11</artifactId>
    <version>1.10.2</version>
</dependency>

需要使用的样例类如下所示:

case class Login(userId: String, ip: String, eventType: String, eventTime: String)

case class Warning(userId: Long, firstFailTime: Long, lastFailTime: Long, warningMsg: String)

在main函数中的代码如下所示:

// 创建执行环境
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

// 生成数据,封装成样例类,并设置时间属性
val loginEventStream: DataStream[Login] = env.fromCollection(List(
    Login("1", "192.168.0.1", "fail", "1558430842"),
    Login("1", "192.168.0.2", "fail", "1558430843"),
    Login("1", "192.168.0.3", "fail", "1558430844"),
    Login("2", "192.168.10.10", "success", "1558430845")
)).assignAscendingTimestamps(_.eventTime.toLong)

/**
 * Flink的CEP中函数的使用说明:
 * 1、.bgein[]()        一个模式的开始样式
 * 2、.next()           紧跟着上一个样式(中间不能有其他,严格近邻)
 * 3、.followedBy()     不要紧跟上一个样式(中间可以有其他,非严格近邻)
 * 4、.where()          样式的条件(传入的参数为过滤的条件)
 * 5、.within()         时间限制(为Flink中的Time类型)
 */
// 定义模式
val loginFailPatten: Pattern[Login, Login] = Pattern
    .begin[Login]("begin").where(_.eventType == "fail")
    .next("next").where(_.eventType == "fail")
    .within(Time.seconds(10))
// 获取流中符合模式的数据 val patternStream: PatternStream[Login] = CEP.pattern(loginEventStream.keyBy(_.userId), loginFailPatten) // 通过select将数据从patternStream中获取出来,并可以封装成需要的类型 val loginFailDataStream: DataStream[Warning] = patternStream.select(new PatternSelectFunction[Login, Warning] { override def select(pattern: util.Map[String, util.List[Login]]): Warning = { val first: Login = pattern.get("begin").get(0) val last: Login = pattern.get("next").get(0) Warning(first.userId.toLong, first.eventTime.toLong, last.eventTime.toLong, "login fail") } }) // 获取超时数据(即在within时间之后,next中的数据还是没有时),在调用select时,需要传入一个侧输出流的标签,会将超时数据放入侧输出流中 val overtimeTag: OutputTag[String] = new OutputTag[String]("overtime") val overtimeStream: DataStream[Warning] = patternStream.select( overtimeTag, new PatternTimeoutFunction[Login, String] { override def timeout(pattern: util.Map[String, util.List[Login]], timeoutTimestamp: Long): String = { "这是超时数据" } }, new PatternSelectFunction[Login, Warning] { override def select(pattern: util.Map[String, util.List[Login]]): Warning = { val first: Login = pattern.get("begin").get(0) val last: Login = pattern.get("next").get(0) Warning(first.userId.toLong, first.eventTime.toLong, last.eventTime.toLong, "login fail") } } ) // 打印数据 loginFailDataStream.print("loginFailDataStream") overtimeStream.print("overtimeStream") overtimeStream.getSideOutput(overtimeTag).print("overtimeTag") // 启动执行器,执行任务 env.execute("CEPDemo")

 

posted on 2020-12-15 15:27  电光闪烁  阅读(419)  评论(0编辑  收藏  举报

导航