寒假学习进度7:tensorflow2.0
tf.where语句
tf.where(条件语句,真返回A,假返回B)
import tensorflow as tf a = tf.constant([1,2,3,4,5,6,7]) b = tf.constant([2,3,4,6,7,89,8]) c = tf.where(tf.greater(a,b),a,b) #tf.greater(a,b)比较a,b元素间的大小 print(c) >>tf.Tensor([ 2 3 4 6 7 89 8], shape=(7,), dtype=int32)
返回一个【0,1)之间的随机数
np.random.RandomState().rand(维度) #若维度为空则返回【0,1)之间的标量
import numpy as np a = np.random.RandomState() b= a.rand() c = a.rand() d = a.rand(2,5) print(b,c,d) >>0.5136594424255404 0.025006978847597727 [[0.50668218 0.45570855 0.78719687 0.92962176 0.2428056 ] [0.01391677 0.69533238 0.14489499 0.33269286 0.54619019]]
将两个数组按垂直方向叠加
np.vstack(数组1,数组2)
import numpy as np a = np.array([[1,2,3],[3,4,6]]) b = np.array([4,5,6]) c = np.vstack((a,b)) print(c) >>[[1 2 3] [3 4 6] [4 5 6]]
np.mgrid[]
np.mgrid[起始值:结束值:步长,起始值:结束值,步长...]
x.ravel() 将x变为一维数组
np.c_[]使返回的间隔数值点配对
np.c_[数值1,数值2,...]
import numpy as np x,y = np.mgrid[1:3:1,2:4:0.5] #包含1,不包含3,步长为1;包含2,不包含4,步长为0.5 grid = np.c_[x.ravel(),y.ravel()] #将x,y转换为一维数组,并配对,生成grid print("x=",x) print("y=",y) print("grid=",grid) >>x= [[1. 1. 1. 1.] [2. 2. 2. 2.]] y= [[2. 2.5 3. 3.5] [2. 2.5 3. 3.5]] grid= [[1. 2. ] [1. 2.5] [1. 3. ] [1. 3.5] [2. 2. ] [2. 2.5] [2. 3. ] [2. 3.5]] #构成网格坐标点