本次作业将进行RYU控制器相关实践,了解RYU控制器开发方法。

实验内容

1.浏览RYU官网学习RYU控制器的安装和RYU开发入门教程,提交你对于教程代码的理解,包括但不限于:

1.描述官方教程实现了一个什么样的交换机功能?

实现了添加一些功能使交换机能够将接收到的数据包转发到所有端口的交换机功能.

2.控制器设定交换机支持什么版本的OpenFlow?

控制器设定交换机支持OpenFlow 1.0

3.控制器设定了交换机如何处理数据包?

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
     //表明当Ryu收到OpenFlow packet_in消息时,将产生事件(调用“packet_in_handler”方法)
    def packet_in_handler(self, ev):
        msg = ev.msg//ev.msg是表示packet_in数据结构的对象。
        dp = msg.datapath//msg.dp是代表数据路径(开关)的对象。
        ofp = dp.ofproto
        ofp_parser = dp.ofproto_parser
           //dp.ofproto和dp.ofproto_parser是代表Ryu和交换机协商的OpenFlow协议的对象。
        actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
           //动作列表。OFPActionOutput类与packet_out消息一起使用,以指定要从中发送数据包的交换机端口。该应用程序使用OFPP_FLOOD标志来指示应在所有端口上发送数据包。
        out = ofp_parser.OFPPacketOut(
           //OFPPacketOut类用于构建packet_out消息。
            datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
            actions=actions)
        dp.send_msg(out)
           //datapath类的send_msg方法,Ryu生成联机数据格式并将其发送到交换机。

2.根据官方教程和提供的示例代码(SimpleSwitch.py),将具有自学习功能的交换机代码(SelfLearning.py)补充完整

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_0

from ryu.lib.mac import haddr_to_bin
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch(app_manager.RyuApp):
    # TODO define OpenFlow 1.0 version for the switch
    OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch, self).__init__(*args, **kwargs)
        self.mac_to_port = {}

    def add_flow(self, datapath, in_port, dst, src, actions):
        ofproto = datapath.ofproto

        match = datapath.ofproto_parser.OFPMatch(
            in_port=in_port,
            dl_dst=haddr_to_bin(dst), dl_src=haddr_to_bin(src))

        mod = datapath.ofproto_parser.OFPFlowMod(
            datapath=datapath, match=match, cookie=0,
            command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0,
            priority=ofproto.OFP_DEFAULT_PRIORITY,
            flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)

        # TODO send modified message out
        datapath.send_msg(mod)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocol(ethernet.ethernet)

        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return
        if eth.ethertype == ether_types.ETH_TYPE_IPV6:
            # ignore ipv6 packet
            return

        dst = eth.dst
        src = eth.src
        dpid = datapath.id
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in DPID:%s MAC_SRC:%s MAC_DST:%s IN_PORT:%s", dpid, src, dst, msg.in_port)

        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = msg.in_port

        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        else:
            out_port = ofproto.OFPP_FLOOD

        # TODO define the action for output
        actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]

        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            self.logger.info("add flow s:DPID:%s Match:[ MAC_SRC:%s MAC_DST:%s IN_PORT:%s ], Action:[OUT_PUT:%s] ",
                             dpid, src, dst, msg.in_port, out_port)
            self.add_flow(datapath, msg.in_port, dst, src, actions)

        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data

        # TODO define the OpenFlow Packet Out
        out = datapath.ofproto_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=msg.in_port,
                                                   actions=actions, data=data)
        datapath.send_msg(out)

    print("PACKET_OUT...")

3.在mininet创建一个最简拓扑,并连接RYU控制器

建立最简单拓扑

**```sudo mn --controller=remote,ip=127.0.0.1,port=6633

![](https://img2018.cnblogs.com/blog/1798373/201912/1798373-20191202195937760-548277844.png)

##连接RYU服务器
**```ryu-manager sl.py
```**
![](https://img2018.cnblogs.com/blog/1798373/201912/1798373-20191202200006741-1166230785.png)

##检查S1流表下发的情况,发现没有下发流表
**```sudo ovs-ofctl dump-flows s1
```**
![](https://img2018.cnblogs.com/blog/1798373/201912/1798373-20191202200018065-981361320.png)

#4.验证自学习交换机的功能,提交分析过程和验证结果
##(1)使用ping命令测试主机h1和h2的连通性
**```h1 ping h2
```**
![](https://img2018.cnblogs.com/blog/1798373/201912/1798373-20191202200720329-1644095603.png)

##(2)连接RYU服务器
**```ryu-manager sl.py
```**
![](https://img2018.cnblogs.com/blog/1798373/201912/1798373-20191202200814716-1337291034.png)

##(3)检查S1的流表情况,发现流表已经下发
**```sudo ovs-ofctl dump-flows s1
```**
![](https://img2018.cnblogs.com/blog/1798373/201912/1798373-20191202201026116-615453113.png)

#5.写下你的实验体会
   首先这次任务本身不是很难,所以我没有提前去写,因为我平时也很忙。然后就是官方的教程我实在难读懂,也许我的思维和大佬的思维总是碰撞不出火花,不过凡事凭借自身的努力和外界的帮助,还是可以迎刃而解。