A*算法基于栅格地图的全局路径规划2.0,python

  1 # 版本1.320180411
  2 # 所有节点的g值并没有初始化为无穷大
  3 # 当两个子节点的f值一样时,程序选择最先搜索到的一个作为父节点加入closed
  4 # 对相同数值的不同对待,导致不同版本的A*算法找到等长的不同路径
  5 # 最后closed表中的节点很多,如何找出最优的一条路径
  6 # 撞墙之后产生较多的节点会加入closed表,此时开始删除closed表中不合理的节点,1.1版本的思路
  7 # 1.2版本思路,建立每一个节点的方向指针,指向f值最小的上个节点
  8 # 参考《无人驾驶概论》、《基于A*算法的移动机器人路径规划》王淼驰,《人工智能及应用》鲁斌
  9 
 10 
 11 import numpy
 12 from pylab import *
 13 import copy
 14 
 15 # 定义一个含有障碍物的20×20的栅格地图
 16 # 10表示可通行点
 17 # 0表示障碍物
 18 # 7表示起点
 19 # 5表示终点
 20 map_grid = numpy.full((20, 20), int(10), dtype=numpy.int8)
 21 map_grid[3, 3:8] = 0
 22 map_grid[3:10, 7] = 0
 23 map_grid[10, 3:8] = 0
 24 map_grid[17, 13:17] = 0
 25 map_grid[10:17, 13] = 0
 26 map_grid[10, 13:17] = 0
 27 map_grid[5, 2] = 7
 28 map_grid[15, 15] = 5
 29 
 30 
 31 class AStar(object):
 32     """
 33     创建一个A*算法类
 34     """
 35 
 36     def __init__(self):
 37         """
 38         初始化
 39         """
 40         # self.g = 0  # g初始化为0
 41         self.start = numpy.array([5, 2])  # 起点坐标
 42         self.goal = numpy.array([15, 15])  # 终点坐标
 43         self.open = numpy.array([[], [], [], [], [], []])  # 先创建一个空的open表, 记录坐标,方向,g值,f值
 44         self.closed = numpy.array([[], [], [], [], [], []])  # 先创建一个空的closed表
 45         self.best_path_array = numpy.array([[], []])  # 回溯路径表
 46 
 47     def h_value_tem(self, son_p):
 48         """
 49         计算拓展节点和终点的h值
 50         :param son_p:子搜索节点坐标
 51         :return:
 52         """
 53         h = (son_p[0] - self.goal[0]) ** 2 + (son_p[1] - self.goal[1]) ** 2
 54         h = numpy.sqrt(h)  # 计算h
 55         return h
 56 
 57     # def g_value_tem(self, son_p, father_p):
 58     #     """
 59     #     计算拓展节点和父节点的g值
 60     #     其实也可以直接用1或者1.414代替
 61     #     :param son_p:子节点坐标
 62     #     :param father_p:父节点坐标,也就是self.current_point
 63     #     :return:返回子节点到父节点的g值,但不是全局g值
 64     #     """
 65     #     g1 = father_p[0] - son_p[0]
 66     #     g2 = father_p[1] - son_p[1]
 67     #     g = g1 ** 2 + g2 ** 2
 68     #     g = numpy.sqrt(g)
 69     #     return g
 70 
 71     def g_accumulation(self, son_point, father_point):
 72         """
 73         累计的g值
 74         :return:
 75         """
 76         g1 = father_point[0] - son_point[0]
 77         g2 = father_point[1] - son_point[1]
 78         g = g1 ** 2 + g2 ** 2
 79         g = numpy.sqrt(g) + father_point[4]  # 加上累计的g值
 80         return g
 81 
 82     def f_value_tem(self, son_p, father_p):
 83         """
 84         求出的是临时g值和h值加上累计g值得到全局f值
 85         :param father_p: 父节点坐标
 86         :param son_p: 子节点坐标
 87         :return:f
 88         """
 89         f = self.g_accumulation(son_p, father_p) + self.h_value_tem(son_p)
 90         return f
 91 
 92     def child_point(self, x):
 93         """
 94         拓展的子节点坐标
 95         :param x: 父节点坐标
 96         :return: 子节点存入open表,返回值是每一次拓展出的子节点数目,用于撞墙判断
 97         当搜索的节点撞墙后,如果不加处理,会陷入死循环
 98         """
 99         # 开始遍历周围8个节点
100         for j in range(-1, 2, 1):
101             for q in range(-1, 2, 1):
102 
103                 if j == 0 and q == 0:  # 搜索到父节点去掉
104                     continue
105                 m = [x[0] + j, x[1] + q]
106                 print(m)
107                 if m[0] < 0 or m[0] > 19 or m[1] < 0 or m[1] > 19:  # 搜索点出了边界去掉
108                     continue
109 
110                 if map_grid[int(m[0]), int(m[1])] == 0:  # 搜索到障碍物去掉
111                     continue
112 
113 
114 
115                 record_g = self.g_accumulation(m, x)
116                 record_f = self.f_value_tem(m, x)  # 计算每一个节点的f值
117 
118                 x_direction, y_direction = self.direction(x, m)  # 每产生一个子节点,记录一次方向
119 
120                 para = [m[0], m[1], x_direction, y_direction, record_g, record_f]  # 将参数汇总一下
121                 print(para)
122 
123                 # 在open表中,则去掉搜索点,但是需要更新方向指针和self.g值
124                 # 而且只需要计算并更新self.g即可,此时建立一个比较g值的函数
125                 a, index = self.judge_location(m, self.open)
126                 if a == 1:
127                     # 说明open中已经存在这个点
128 
129                     if record_f <= self.open[5][index]:
130                         self.open[5][index] = record_f
131                         self.open[4][index] = record_g
132                         self.open[3][index] = y_direction
133                         self.open[2][index] = x_direction
134 
135                     continue
136 
137                 # 在closed表中,则去掉搜索点
138                 b, index2 = self.judge_location(m, self.closed)
139                 if b == 1:
140 
141                     if record_f <= self.closed[5][index2]:
142                         self.closed[5][index2] = record_f
143                         self.closed[4][index2] = record_g
144                         self.closed[3][index2] = y_direction
145                         self.closed[2][index2] = x_direction
146                         self.closed = numpy.delete(self.closed, index2, axis=1)
147                         self.open = numpy.c_[self.open, para]
148                     continue
149 
150                 self.open = numpy.c_[self.open, para]  # 参数添加到open中
151                 print(self.open)
152 
153     def judge_location(self, m, list_co):
154         """
155         判断拓展点是否在open表或者closed表中
156         :return:返回判断是否存在,和如果存在,那么存在的位置索引
157         """
158         jud = 0
159         index = 0
160         for i in range(list_co.shape[1]):
161 
162             if m[0] == list_co[0, i] and m[1] == list_co[1, i]:
163 
164                 jud = jud + 1
165 
166                 index = i
167                 break
168             else:
169                 jud = jud
170         # if a != 0:
171         #     continue
172         return jud, index
173 
174     def direction(self, father_point, son_point):
175         """
176         建立每一个节点的方向,便于在closed表中选出最佳路径
177         非常重要的一步,不然画出的图像参考1.1版本
178         x记录子节点和父节点的x轴变化
179         y记录子节点和父节点的y轴变化
180         如(01)表示子节点在父节点的方向上变化0和1
181         :return:
182         """
183         x = son_point[0] - father_point[0]
184         y = son_point[1] - father_point[1]
185         return x, y
186 
187     def path_backtrace(self):
188         """
189         回溯closed表中的最短路径
190         :return:
191         """
192         best_path = [15, 15]  # 回溯路径的初始化
193         self.best_path_array = numpy.array([[15], [15]])
194         j = 0
195         while j <= self.closed.shape[1]:
196             for i in range(self.closed.shape[1]):
197                 if best_path[0] == self.closed[0][i] and best_path[1] == self.closed[1][i]:
198                     x = self.closed[0][i]-self.closed[2][i]
199                     y = self.closed[1][i]-self.closed[3][i]
200                     best_path = [x, y]
201                     self.best_path_array = numpy.c_[self.best_path_array, best_path]
202                     break  # 如果已经找到,退出本轮循环,减少耗时
203                 else:
204                     continue
205             j = j+1
206         # return best_path_array
207 
208     def main(self):
209         """
210         main函数
211         :return:
212         """
213         best = self.start  # 起点放入当前点,作为父节点
214         h0 = self.h_value_tem(best)
215         init_open = [best[0], best[1], 0, 0, 0, h0]  # 将方向初始化为(00),g_init=0,f值初始化h0
216         self.open = numpy.column_stack((self.open, init_open))  # 起点放入open,open初始化
217 
218         ite = 1  # 设置迭代次数小于200,防止程序出错无限循环
219         while ite <= 1000:
220 
221                 # open列表为空,退出
222                 if self.open.shape[1] == 0:
223                     print('没有搜索到路径!')
224                     return
225 
226                 self.open = self.open.T[numpy.lexsort(self.open)].T  # open表中最后一行排序(联合排序)
227 
228                 # 选取open表中最小f值的节点作为best,放入closed表
229 
230                 best = self.open[:, 0]
231                 print('检验第%s次当前点坐标*******************' % ite)
232                 print(best)
233                 self.closed = numpy.c_[self.closed, best]
234 
235                 if best[0] == 15 and best[1] == 15:  # 如果best是目标点,退出
236                     print('搜索成功!')
237                     return
238 
239                 self.child_point(best)  # 生成子节点并判断数目
240                 print(self.open)
241                 self.open = numpy.delete(self.open, 0, axis=1)  # 删除open中最优点
242 
243                 # print(self.open)
244 
245                 ite = ite+1
246 
247 
248 class MAP(object):
249     """
250     画出地图
251     """
252     def draw_init_map(self):
253         """
254         画出起点终点图
255         :return:
256         """
257         plt.imshow(map_grid, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
258         # plt.colorbar()
259         xlim(-1, 20)  # 设置x轴范围
260         ylim(-1, 20)  # 设置y轴范围
261         my_x_ticks = numpy.arange(0, 20, 1)
262         my_y_ticks = numpy.arange(0, 20, 1)
263         plt.xticks(my_x_ticks)
264         plt.yticks(my_y_ticks)
265         plt.grid(True)
266         # plt.show()
267 
268     def draw_path_open(self, a):
269         """
270         画出open表中的坐标点图
271         :return:
272         """
273         map_open = copy.deepcopy(map_grid)
274         for i in range(a.closed.shape[1]):
275             x = a.closed[:, i]
276 
277             map_open[int(x[0]), int(x[1])] = 1
278 
279         plt.imshow(map_open, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
280         # plt.colorbar()
281         xlim(-1, 20)  # 设置x轴范围
282         ylim(-1, 20)  # 设置y轴范围
283         my_x_ticks = numpy.arange(0, 20, 1)
284         my_y_ticks = numpy.arange(0, 20, 1)
285         plt.xticks(my_x_ticks)
286         plt.yticks(my_y_ticks)
287         plt.grid(True)
288         # plt.show()
289 
290     def draw_path_closed(self, a):
291         """
292         画出closed表中的坐标点图
293         :return:
294         """
295         print('打印closed长度:')
296         print(a.closed.shape[1])
297         map_closed = copy.deepcopy(map_grid)
298         for i in range(a.closed.shape[1]):
299             x = a.closed[:, i]
300 
301             map_closed[int(x[0]), int(x[1])] = 5
302 
303         plt.imshow(map_closed, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
304         # plt.colorbar()
305         xlim(-1, 20)  # 设置x轴范围
306         ylim(-1, 20)  # 设置y轴范围
307         my_x_ticks = numpy.arange(0, 20, 1)
308         my_y_ticks = numpy.arange(0, 20, 1)
309         plt.xticks(my_x_ticks)
310         plt.yticks(my_y_ticks)
311         plt.grid(True)
312         # plt.show()
313 
314     def draw_direction_point(self, a):
315         """
316         从终点开始,根据记录的方向信息,画出搜索的路径图
317         :return:
318         """
319         print('打印direction长度:')
320         print(a.best_path_array.shape[1])
321         map_direction = copy.deepcopy(map_grid)
322         for i in range(a.best_path_array.shape[1]):
323             x = a.best_path_array[:, i]
324 
325             map_direction[int(x[0]), int(x[1])] = 6
326 
327         plt.imshow(map_direction, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10)
328         # plt.colorbar()
329         xlim(-1, 20)  # 设置x轴范围
330         ylim(-1, 20)  # 设置y轴范围
331         my_x_ticks = numpy.arange(0, 20, 1)
332         my_y_ticks = numpy.arange(0, 20, 1)
333         plt.xticks(my_x_ticks)
334         plt.yticks(my_y_ticks)
335         plt.grid(True)
336 
337     def draw_three_axes(self, a):
338         """
339         将三张图画在一个figure中
340         :return:
341         """
342         plt.figure()
343         ax1 = plt.subplot(221)
344 
345         ax2 = plt.subplot(222)
346         ax3 = plt.subplot(223)
347         ax4 = plt.subplot(224)
348         plt.sca(ax1)
349         self.draw_init_map()
350         plt.sca(ax2)
351         self.draw_path_open(a)
352         plt.sca(ax3)
353         self.draw_path_closed(a)
354         plt.sca(ax4)
355         self.draw_direction_point(a)
356 
357         plt.show()
358 
359 
360 if __name__ == '__main__':
361 
362     a1 = AStar()
363     a1.main()
364     a1.path_backtrace()
365     m1 = MAP()
366     m1.draw_three_axes(a1)

 

posted @ 2018-04-13 20:36  最后的绝地武士  阅读(3960)  评论(4编辑  收藏  举报