Python之旅.第九章.并发编程。
一、异步+回调机制
a、问题引入
问题:
1)任务的返回值不能得到及时的处理,必须等到所有任务都运行完毕才能统一进行处理
2)解析的过程是串行执行的,如果解析一次需要花费2s,解析9次则需要花费18s
from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
import os
import requests
import time
import random
def get(url):
print('%s GET %s' %(os.getpid(),url))
response=requests.get(url)
time.sleep(random.randint(1,3))
if response.status_code == 200:
return response.text
def pasrse(res):
print('%s 解析结果为:%s' %(os.getpid(),len(res)))
if __name__ == '__main__':
urls=[
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.python.org',
]
pool=ProcessPoolExecutor(4)
objs=[]
for url in urls:
obj=pool.submit(get,url)
objs.append(obj)
pool.shutdown(wait=True)
for obj in objs:
res=obj.result()
pasrse(res)
b、进阶解决方案: 可以解决上述两个问题,但使得获取信息函数set和解析信息函数pasrse耦合到了一起
from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
import requests
import os
import time
import random
def get(url):
print('%s GET %s' %(os.getpid(),url))
response=requests.get(url)
time.sleep(random.randint(1,3))
if response.status_code == 200:
pasrse(response.text)
def pasrse(res):
print('%s 解析结果为:%s' %(os.getpid(),len(res)))
if __name__ == '__main__':
urls=[
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.python.org',
]
pool=ProcessPoolExecutor(4)
for url in urls:
pool.submit(get,url)
c1、终极解决方案: 可以解决上述两个问题,同时使获取信息函数set和解析信息函数pasrse解耦合(进程版)
主进程作为回调的执行者
from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
import requests
import os
import time
import random
def get(url):
print('%s GET %s' %(os.getpid(),url))
response=requests.get(url)
time.sleep(random.randint(1,3))
if response.status_code == 200:
# 干解析的活
return response.text
def pasrse(obj): #后续回调是obj会将自身传给pasrse,所以pasrse必须有且仅有一个参数
res=obj.result()
print('%s 解析结果为:%s' %(os.getpid(),len(res)))
if __name__ == '__main__':
urls=[
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.python.org',
]
pool=ProcessPoolExecutor(4)
for url in urls:
obj=pool.submit(get,url)
obj.add_done_callback(pasrse)
print('主进程',os.getpid())
c2、终极解决方案: 可以解决上述两个问题,同时使获取信息函数set和解析信息函数pasrse解耦合(线程版)
哪个子进程空闲就由那个子进程作为回调的执行者
from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
from threading import current_thread
import requests
import os
import time
import random
def get(url):
print('%s GET %s' %(current_thread().name,url))
response=requests.get(url)
time.sleep(random.randint(1,3))
if response.status_code == 200:
# 干解析的活
return response.text
def pasrse(obj):
res=obj.result()
print('%s 解析结果为:%s' %(current_thread().name,len(res)))
if __name__ == '__main__':
urls=[
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.baidu.com',
'https://www.python.org',
]
pool=ThreadPoolExecutor(4)
for url in urls:
obj=pool.submit(get,url)
obj.add_done_callback(pasrse)
print('主线程',current_thread().name)
二、线程queue
import queue
q=queue.Queue(3) #队列:先进先出
q.put(1)
q.put(2)
q.put(3)
# q.put(4) #阻塞
print(q.get())
print(q.get())
print(q.get())
q=queue.LifoQueue(3) #堆栈:后进先出
q.put('a')
q.put('b')
q.put('c')
print(q.get())
print(q.get())
print(q.get())
q=queue.PriorityQueue(3) #优先级队列:可以以小元组的形式往队列里存值,第一个元素代表优先级,数字越小优先级越高
q.put((10,'user1'))
q.put((-3,'user2'))
q.put((-2,'user3'))
print(q.get())
print(q.get())
print(q.get())
三、线程event
a、案例一: 等待check重置event内的值后,connect从event.wait()后继续运行
from threading import Event,current_thread,Thread
import time
event=Event() #event内部维护着一个全局变量
def check():
print('%s 正在检测服务是否正常....' %current_thread().name)
time.sleep(3)
event.set() #改变event中的全局变量的值
def connect():
print('%s 等待连接...' %current_thread().name)
event.wait() #等待全局变量的值被重置;如果括号中为1,即只等1秒
print('%s 开始连接...' % current_thread().name)
if __name__ == '__main__':
t1=Thread(target=connect)
t2=Thread(target=connect)
t3=Thread(target=connect)
c1=Thread(target=check)
t1.start()
t2.start()
t3.start()
c1.start()
b、案例二:三次刷尝试后退出
from threading import Event,current_thread,Thread
import time
event=Event()
def check():
print('%s 正在检测服务是否正常....' %current_thread().name)
time.sleep(5)
event.set()
def connect():
count=1
while not event.is_set():
if count == 4:
print('尝试的次数过多,请稍后重试')
return
print('%s 尝试第%s次连接...' %(current_thread().name,count))
event.wait(1)
count+=1
print('%s 开始连接...' % current_thread().name)
if __name__ == '__main__':
t1=Thread(target=connect)
t2=Thread(target=connect)
t3=Thread(target=connect)
c1=Thread(target=check)
t1.start()
t2.start()
t3.start()
c1.start()
四、协程
1、单线程下实现并发:协程 (为了提高效率;但不是说所有协程都会提升效率)
并发指的多个任务看起来是同时运行的;并发实现的本质:切换+保存状态
有效的协程在一定程度‘骗过’了CPU;通过自己内部协调,一遇到IO就切到自己的其他程序中,使得CPU以为这个程序一直在运行,从而使其更有可能处于就绪态或运行态,以更多的占用CPU。
2、实现并发的三种手段:
a)单线程下的并发;由程序自己控制,相对速度快
b)多线程下的并发;由操作系统控制,相对速度较慢
c)多进程下的并发;由操作系统控制,相对速度慢
3、基于yield保存状态,实现两个任务直接来回切换,即并发的效果 (但yield不会遇到阻塞自动切程序)
PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
import time
def consumer():
'''任务1:接收数据,处理数据'''
while True:
x=yield
def producer():
'''任务2:生产数据'''
g=consumer()
next(g)
for i in range(10000000):
g.send(i)
start=time.time()
producer() #1.0202116966247559
stop=time.time()
print(stop-start)
# 纯计算的任务并发执行
import time
def task1():
res=1
for i in range(1000000):
res+=i
yield
time.sleep(10000) #yield不会自动跳过阻塞
print('task1')
def task2():
g=task1()
res=1
for i in range(1000000):
res*=i
next(g)
print('task2')
start=time.time()
task2()
stop=time.time()
print(stop-start)
五、单线程下实现遇到IO切换
1、 用greenlet(封装yield,遇到IO不自动切)
from greenlet import greenlet
import time
def eat(name):
print('%s eat 1' %name)
time.sleep(30)
g2.switch('alex') #只在第一次切换时传值
print('%s eat 2' %name)
g2.switch()
def play(name):
print('%s play 1' %name)
g1.switch()
print('%s play 2' %name)
g1=greenlet(eat)
g2=greenlet(play)
g1.switch('egon')
2、 用gevent模块(封装greenlet,不处理的话,遇到自己的IO才主动切)
import gevent
def eat(name):
print('%s eat 1' %name)
gevent.sleep(5) #换成time.sleep(5),不会自动切
print('%s eat 2' %name)
def play(name):
print('%s play 1' %name)
gevent.sleep(3)
print('%s play 2' %name)
g1=gevent.spawn(eat,'egon')
g2=gevent.spawn(play,'alex')
# gevent.sleep(100)
# g1.join()
# g2.join()
gevent.joinall([g1,g2])
3、 用gevent模块(封装greenlet,处理的话,遇到其他IO也主动切)
from gevent import monkey;monkey.patch_all()
from threading import current_thread
import gevent
import time
def eat():
print('%s eat 1' %current_thread().name)
time.sleep(5)
print('%s eat 2' %current_thread().name)
def play():
print('%s play 1' %current_thread().name)
time.sleep(3)
print('%s play 2' %current_thread().name)
g1=gevent.spawn(eat)
g2=gevent.spawn(play)
# gevent.sleep(100)
# g1.join()
# g2.join()
print(current_thread().name)
gevent.joinall([g1,g2])