用R读取PDF并进行数据挖掘
用R读取PDF并进行数据挖掘,例子如下:
# here is a pdf for mining url <- "http://www.noisyroom.net/blog/RomneySpeech072912.pdf" dest <- tempfile(fileext = ".pdf") download.file(url, dest, mode = "wb") # set path to pdftotxt.exe and convert pdf to text exe <- "C:\\Program Files\\xpdfbin-win-3.03\\bin32\\pdftotext.exe" system(paste("\"", exe, "\" \"", dest, "\"", sep = ""), wait = F) # get txt-file name and open it filetxt <- sub(".pdf", ".txt", dest) shell.exec(filetxt); shell.exec(filetxt) # strangely the first try always throws an error.. # do something with it, i.e. a simple word cloud library(tm) library(wordcloud) library(Rstem) txt <- readLines(filetxt) # don't mind warning.. txt <- tolower(txt) txt <- removeWords(txt, c("\\f", stopwords())) corpus <- Corpus(VectorSource(txt)) corpus <- tm_map(corpus, removePunctuation) tdm <- TermDocumentMatrix(corpus) m <- as.matrix(tdm) d <- data.frame(freq = sort(rowSums(m), decreasing = TRUE)) # Stem words d$stem <- wordStem(row.names(d), language = "english") # and put words to column, otherwise they would be lost when aggregating d$word <- row.names(d) # remove web address (very long string): d <- d[nchar(row.names(d)) < 20, ] # aggregate freqeuncy by word stem and # keep first words.. agg_freq <- aggregate(freq ~ stem, data = d, sum) agg_word <- aggregate(word ~ stem, data = d, function(x) x[1]) d <- cbind(freq = agg_freq[, 2], agg_word) # sort by frequency d <- d[order(d$freq, decreasing = T), ] # print wordcloud: wordcloud(d$word, d$freq) # remove files file.remove(dir(tempdir(), full.name=T)) # remove files
Andy_能力越到责任越大