OpenKiwi学习笔记

Python 打印调用栈:

1
2
import traceback
traceback.print_stack()

For CLI usage, the general command is:

1
kiwi (train|pretrain|predict|evaluate|search) CONFIG_FILE

导入bert模型:

1
2
3
4
5
6
7
from transformers import (
    BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
    DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
    AutoTokenizer,
    BertConfig,
    BertModel,
)

qe system 的组成:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Furthermore, all of our QE systems share a similar architecture. They are composed of
 
- Encoder
- Decoder
- Output
- (Optionally) TLM Output
 
Encoder: Embedding and creating features to be used for downstream tasks. i.e. Predictor,
BERT, etc
 
Decoder: Responsible for learning feature transformations better suited for the
downstream task. i.e. MLP, LSTM, etc
 
Output: Simple feedforwards that take decoder features and transform them into the
prediction required by the downstream task. Something in the same line as the common
"classification heads" being used with transformers.
 
TLM Output: A simple output layer that trains for the specific TLM objective. It can be
useful to continue finetuning the predictor during training of the complete QE system.

qe system 继承关系:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
All QE systems inherit from :class:`kiwi.systems.qe_system.QESystem`.
 
Use ``kiwi train`` to train these systems.
 
Currently available are:
 
+--------------------------------------------------------------+
| :class:`kiwi.systems.nuqe.NuQE`                              |
+--------------------------------------------------------------+
| :class:`kiwi.systems.predictor_estimator.PredictorEstimator` |
+--------------------------------------------------------------+
| :class:`kiwi.systems.bert.Bert`                              |
+--------------------------------------------------------------+
| :class:`kiwi.systems.xlm.XLM`                                |
+--------------------------------------------------------------+
| :class:`kiwi.systems.xlmroberta.XLMRoberta`                  |
+--------------------------------------------------------------+

TLM 继承关系:

1
2
3
4
5
6
7
8
9
10
11
12
TLM --- :mod:`kiwi.systems.tlm_system`
--------------------------------------
 
All TLM systems inherit from :class:`kiwi.systems.tlm_system.TLMSystem`.
 
Use ``kiwi pretrain`` to train these systems. These systems can then be used as the
encoder part in QE systems by using the `load_encoder` flag.
 
Currently available are:
 
+-------------------------------------------+
| :class:`kiwi.systems.predictor.Predictor` |

Configuration class

1
2
3
4
5
kiwi.lib.train.Configuration
kiwi.lib.train.RunConfig
kiwi.lib.train.TrainerConfig
kiwi.data.datasets.wmt_qe_dataset.WMTQEDataset.Config
kiwi.systems.qe_system.QESystem.Config

encoder 采用 bert 模型,模型整体结构为:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
Bert(
  (encoder): BertEncoder(
    (bert): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(119547, 768, padding_idx=0)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
     ................
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
    (scalar_mix): ScalarMixWithDropout(
      (scalar_parameters): ParameterList(
          (0): Parameter containing: [torch.FloatTensor of size 1]
          (1): Parameter containing: [torch.FloatTensor of size 1]
          (2): Parameter containing: [torch.FloatTensor of size 1]
          (3): Parameter containing: [torch.FloatTensor of size 1]
          (4): Parameter containing: [torch.FloatTensor of size 1]
          (5): Parameter containing: [torch.FloatTensor of size 1]
          (6): Parameter containing: [torch.FloatTensor of size 1]
          (7): Parameter containing: [torch.FloatTensor of size 1]
          (8): Parameter containing: [torch.FloatTensor of size 1]
          (9): Parameter containing: [torch.FloatTensor of size 1]
          (10): Parameter containing: [torch.FloatTensor of size 1]
          (11): Parameter containing: [torch.FloatTensor of size 1]
          (12): Parameter containing: [torch.FloatTensor of size 1]
      )
    )
    (output_embeddings): Embedding(119547, 768, padding_idx=0)
  )
  (decoder): LinearDecoder(
    (linear_outs): ModuleDict(
      (target): Sequential(
        (0): Linear(in_features=768, out_features=768, bias=True)
        (1): Tanh()
      )
      (source): Sequential(
        (0): Linear(in_features=768, out_features=768, bias=True)
        (1): Tanh()
      )
      (target_sentence): Sequential(
        (0): Linear(in_features=768, out_features=768, bias=True)
        (1): Tanh()
        (2): Dropout(p=0.1, inplace=False)
        (3): Linear(in_features=768, out_features=768, bias=True)
        (4): Tanh()
        (5): Dropout(p=0.1, inplace=False)
      )
    )
    (dropout): Dropout(p=0.1, inplace=False)
  )
  (outputs): QEOutputs(
    (word_outputs): ModuleDict(
      (target_tags): WordLevelOutput(
        (linear): Linear(in_features=768, out_features=2, bias=True)
        (loss_fn): CrossEntropyLoss()
      )
      (gap_tags): GapTagsOutput(
        (linear): Linear(in_features=1536, out_features=2, bias=True)
        (loss_fn): CrossEntropyLoss()
      )
      (source_tags): WordLevelOutput(
        (linear): Linear(in_features=768, out_features=2, bias=True)
        (loss_fn): CrossEntropyLoss()
      )
    )
    (sentence_outputs): ModuleDict(
      (sentence_scores): SentenceScoreRegression(
        (sentence_pred): Sequential(
          (linear_0): Linear(in_features=768, out_features=384, bias=True)
          (activation_0): Tanh()
          (dropout_0): Dropout(p=0.0, inplace=False)
          (linear_1): Linear(in_features=384, out_features=1, bias=True)
        )
        (loss_fn): MSELoss()
      )
    )
  )
  (tlm_outputs): TLMOutputs(
    (masked_word_outputs): ModuleDict()
  )
)

cli.py:print(arguments):

1
2
3
4
5
6
7
8
9
10
11
12
{'--example': False,
 '--help': False,
 '--quiet': False,
 '--verbose': False,
 '--version': False,
 'CONFIG_FILE': 'config/bert.yaml',
 'OVERWRITES': [],
 'evaluate': False,
 'predict': False,
 'pretrain': False,
 'search': False,
 'train': True}

cli.py:config_dict:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
{
    'run': {
        'experiment_name': 'BERT WMT20 EN-ZH',
        'seed': 42,
        'use_mlflow': False
    },
    'trainer': {
        'deterministic': True,
        'gpus': 1,
        'epochs': 10,
        'main_metric': ['WMT19_MCC', 'PEARSON'],
        'gradient_max_norm': 1.0,
        'gradient_accumulation_steps': 1,
        'amp_level': 'O2',
        'precision': 16,
        'log_interval': 100,
        'checkpoint': {
            'validation_steps': 0.2,
            'early_stop_patience': 10
        }
    },
    'system': {
        'class_name': 'Bert',
        'batch_size': 2,
        'num_data_workers': 1,
        'model': {
            'encoder': {
                'model_name': 'bert-base-multilingual-cased',
                'use_mlp': False,
                'freeze': False
            },
            'decoder': {
                'hidden_size': 768,
                'bottleneck_size': 768,
                'dropout': 0.1
            },
            'outputs': {
                'word_level': {
                    'target': True,
                    'gaps': True,
                    'source': True,
                    'class_weights': {
                        'target_tags': {
                            'BAD': 3.0
                        },
                        'gap_tags': {
                            'BAD': 5.0
                        },
                        'source_tags': {
                            'BAD': 3.0
                        }
                    }
                },
                'sentence_level': {
                    'hter': True,
                    'use_distribution': False,
                    'binary': False
                },
                'n_layers_output': 2,
                'sentence_loss_weight': 1
            },
            'tlm_outputs': {
                'fine_tune': False
            }
        },
        'optimizer': {
            'class_name': 'adamw',
            'learning_rate': 1e-05,
            'warmup_steps': 0.1,
            'training_steps': 12000
        },
        'data_processing': {
            'share_input_fields_encoders': True
        }
    },
    'data': {
        'train': {
            'input': {
                'source': 'data/WMT20/en-zh/train/train.src',
                'target': 'data/WMT20/en-zh/train/train.mt',
                'alignments': 'data/WMT20/en-zh/train/train.src-mt.alignments',
                'post_edit': 'data/WMT20/en-zh/train/train.pe'
            },
            'output': {
                'source_tags': 'data/WMT20/en-zh/train/train.source_tags',
                'target_tags': 'data/WMT20/en-zh/train/train.tags',
                'sentence_scores': 'data/WMT20/en-zh/train/train.hter'
            }
        },
        'valid': {
            'input': {
                'source': 'data/WMT20/en-zh/dev/dev.src',
                'target': 'data/WMT20/en-zh/dev/dev.mt',
                'alignments': 'data/WMT20/en-zh/dev/dev.src-mt.alignments',
                'post_edit': 'data/WMT20/en-zh/dev/dev.pe'
            },
            'output': {
                'source_tags': 'data/WMT20/en-zh/dev/dev.source_tags',
                'target_tags': 'data/WMT20/en-zh/dev/dev.tags',
                'sentence_scores': 'data/WMT20/en-zh/dev/dev.hter'
            }
        },
        'test': {
            'input': {
                'source': 'data/WMT20/en-zh/test-blind/test.src',
                'target': 'data/WMT20/en-zh/test-blind/test.mt',
                'alignments': 'data/WMT20/en-zh/test-blind/test.src-mt.alignments'
            }
        }
    },
    'verbose': False,
    'quiet': False
}

QESystem:

1
2
3
4
5
6
7
8
9
10
def forward(self, batch_inputs):
    encoder_features = self.encoder(batch_inputs)
    features = self.decoder(encoder_features, batch_inputs)
    outputs = self.outputs(features, batch_inputs)
 
    # For fine-tuning the encoder
    if self.tlm_outputs:
        outputs.update(self.tlm_outputs(encoder_features, batch_inputs))
 
    return outputs
  • pytorch_lightning 执行流程:

PL的流程很简单,生产流水线,有一个固定的顺序。

这部分代码只执行一次。

1
2
3
1. `__init__()`(初始化 LightningModule )
2. `prepare_data()` (准备数据,包括下载数据、预处理等等)
3. `configure_optimizers()` (配置优化器)

测试 “验证代码”,提前来做的意义在于:不需要等待漫长的训练过程才发现验证代码有错。

1
2
3
1. `val_dataloader()`
2. `validation_step()`
3. `validation_epoch_end()` 

batch 数据:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
{
    'source': BatchedSentence(
        tensor = tensor([
            [
                15846, 10491, 82978, 10226, 75312, 10571, 10105, 106095, 11942,
                38587, 10108, 10955, 11586, 119, 102, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0
            ],
            [
                10135, 10386, 11288, 10207, 117, 17668, 11945, 39091, 10226,
                10751, 14310, 107, 17316, 10230, 10108, 11589, 107, 117,
                17846, 15736, 10188, 13209, 14951, 13240, 117, 11406, 14320,
                10270, 10108, 10226, 84977, 11305, 68999, 10731, 11202, 31419,
                119, 102
            ]
        ], device = 'cuda:0'),
        lengths = tensor([15, 38], device = 'cuda:0'),
        bounds = tensor([
            [0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
            [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 34, 36, 37]
        ], device = 'cuda:0'),
        bounds_lengths = tensor([13, 31], device = 'cuda:0'),
        strict_masks = tensor([
            [
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, False, False, False, False, False, False,
                False, False, False, False, False, False, False, False, False, False,
                False, False, False, False, False, False, False, False
            ],
            [   True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, False
            ]
        ], device = 'cuda:0'),
        number_of_tokens = tensor([12, 30], device = 'cuda:0', dtype = torch.int32)
    ),
 
    'target': BatchedSentence(
        tensor = tensor([
            [   101, 4877, 113183, 113227, 118188, 3031, 2128, 114696, 217,
                2674, 115512, 118188, 5718, 7724, 111978, 6348, 114696, 2079,
                5740, 115551, 2196, 5718, 2773, 111915, 2206, 119, 102,
                0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 0
            ],
            [   101, 10207, 3642, 10186, 4460, 10386, 4348, 10064, 4536,
                4580, 114286, 7735, 117459, 2196, 5718, 84977, 11305, 68999,
                10731, 4237, 113162, 6063, 10270, 8272, 10064, 4163, 112293,
                2146, 2196, 5718, 4333, 5718, 107, 3976, 5718, 4614,
                113664, 107, 10064, 2460, 111870, 4461, 3228, 118573, 113826,
                217, 4608, 5718, 4784, 112939, 1882, 102
            ]
        ], device = 'cuda:0'),
        lengths = tensor([27, 52], device = 'cuda:0'),
        bounds = tensor([
            [0, 1, 5, 6, 8, 9, 12, 13, 15, 17, 18, 20, 21, 22, 24, 25, 26, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
            [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 45, 46,47, 48, 50, 51]
        ], device = 'cuda:0'),
        bounds_lengths = tensor([17, 40], device = 'cuda:0'),
        strict_masks = tensor([
            [
                False, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, False, False, False, False,
                False, False, False, False, False, False, False, False, False, False,
                False, False, False, False, False, False, False, False, False, False,
                False, False
            ],
            [
                False, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, False
            ]
        ], device = 'cuda:0'),
        number_of_tokens = tensor([15, 38], device = 'cuda:0', dtype = torch.int32)
    ),
 
    'alignments': tensor([
            [
                [1, 0, 0, ..., 0, 0, 0],
                [0, 1, 0, ..., 0, 0, 0],
                [0, 0, 0, ..., 0, 0, 0],
                ..., [0, 0, 0, ..., 0, 0, 0],
                [0, 0, 0, ..., 0, 0, 0],
                [0, 0, 0, ..., 0, 0, 0]
            ],
            [
                [1, 0, 0, ..., 0, 0, 0],
                [0, 0, 0, ..., 0, 0, 0],
                [0, 0, 0, ..., 0, 0, 0],
                ..., [0, 0, 0, ..., 0, 0, 0],
                [0, 0, 0, ..., 0, 1, 0],
                [0, 0, 0, ..., 0, 0, 0]
            ]
        ], device = 'cuda:0', dtype = torch.int32),
 
    'pe': BatchedSentence(
        tensor = tensor([
            [
                101, 4877, 113183, 113227, 118188, 10060, 15846, 10061, 3031,
                2128, 114696, 217, 2674, 115512, 118188, 10060, 10955, 11586,
                10061, 3740, 117490, 2775, 5718, 2212, 114236, 2468, 7475,
                117244, 5740, 115551, 2196, 5718, 2773, 112165, 1882, 102,
                0, 0, 0, 0, 0, 0, 0, 0, 0,
                0, 0, 0, 0, 0
            ],
            [
                101, 10207, 3642, 10186, 4460, 10386, 4348, 10064, 2234,
                114346, 4520, 7735, 117459, 2196, 5718, 84977, 11305, 68999,
                10731, 4237, 113162, 6063, 10270, 8272, 8505, 114003, 2196,
                5718, 4333, 4447, 115521, 100, 17316, 10230, 10108, 11589,
                100, 10064, 4792, 114213, 5611, 13209, 14951, 13240, 2726,
                111847, 5162, 112652, 1882, 102
            ]
        ], device = 'cuda:0'),
        lengths = tensor([36, 50], device = 'cuda:0'),
        bounds = tensor([
            [0, 1, 5, 6, 7, 8, 9, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 30, 31, 32, 34, 35, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
            ],
            [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 43, 44, 46, 48, 49
            ]
        ], device = 'cuda:0'), bounds_lengths = tensor([25, 37], device = 'cuda:0'),
        strict_masks = tensor([
            [   False, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, False, False, False, False, False,
                False, False, False, False, False, False, False, False, False, False
            ],
            [   False, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, False
            ]
        ],
        device = 'cuda:0'),
        number_of_tokens = tensor([23, 35], device = 'cuda:0', dtype = torch.int32)
    ),
 
    'source_tags': BatchedSentence(
        tensor = tensor([
            [0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
            [1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1]
        ], device = 'cuda:0'),
        lengths = tensor([12, 30], device = 'cuda:0'),
        bounds = tensor([
            [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
            [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
        ], device = 'cuda:0'),
        bounds_lengths = tensor([12, 30], device = 'cuda:0'),
        strict_masks = tensor([
            [   True, True, True, True, True, True, True, True, True, True,
                True, True, False, False, False, False, False, False, False, False,
                False, False, False, False, False, False, False, False, False, False
            ],
            [   True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True
            ]
        ], device = 'cuda:0'),
        number_of_tokens = tensor([12, 30], device = 'cuda:0', dtype = torch.int32)
    ),
 
    'target_tags': BatchedSentence(
        tensor = tensor([
            [1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
            [1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1]
        ], device = 'cuda:0'),
        lengths = tensor([15, 38], device = 'cuda:0'),
        bounds = tensor([
            [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
            [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]
        ], device = 'cuda:0'),
        bounds_lengths = tensor([15, 38], device = 'cuda:0'),
        strict_masks = tensor([
            [   True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, False, False, False, False, False,
                False, False, False, False, False, False, False, False, False, False,
                False, False, False, False, False, False, False, False
            ],
            [   True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True
            ]
        ], device = 'cuda:0'),
        number_of_tokens = tensor([15, 38], device = 'cuda:0', dtype = torch.int32)
    ),
 
    'sentence_scores': tensor([0.6522, 0.5143], device = 'cuda:0'),
 
    'gap_tags': BatchedSentence(
        tensor = tensor([
            [1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
            [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
        ], device = 'cuda:0'),
        lengths = tensor([16, 39], device = 'cuda:0'),
        bounds = tensor([
            [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
            [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]
        ], device = 'cuda:0'),
        bounds_lengths = tensor([16, 39], device = 'cuda:0'),
        strict_masks = tensor([
            [   True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, False, False, False, False,
                False, False, False, False, False, False, False, False, False, False,
                False, False, False, False, False, False, False, False, False
            ],
            [   True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True, True,
                True, True, True, True, True, True, True, True, True
            ]
        ], device = 'cuda:0'),
        number_of_tokens = tensor([16, 39], device = 'cuda:0', dtype = torch.int32)),
     
    'binary': tensor([1, 1], device = 'cuda:0')
}

result example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
2021-08-27T08:15:17Z INFO      kiwi.training.callbacks:117: Best validation so far was in epoch 0:
    val_loss: 85.9468,
    val_WMT19_MCC: 0.5628,
    val_loss_target_tags: 30.9671,
    val_loss_gap_tags: 22.8837,
 
    val_loss_source_tags: 32.0960,
    val_WMT19_F1_MULT: 0.5807,
    val_F1_BAD: 0.7120,
    val_F1_OK: 0.3879,
    val_WMT19_CORRECT: 0.7842,
 
    val_target_tags_F1_MULT: 0.3510,
    val_target_tags_MCC: 0.3523,
    val_target_tags_CORRECT: 0.6544,
 
    val_gap_tags_F1_MULT: 0.2005,
    val_gap_tags_MCC: 0.1625,
    val_gap_tags_CORRECT: 0.9068,
 
    val_source_tags_F1_MULT: 0.2762,
    val_source_tags_MCC: 0.2858,
    val_source_tags_CORRECT: 0.6083

 

 

 

 

 

 

 

 

 

未完待续。。。。。。

posted @   _yanghh  阅读(174)  评论(0编辑  收藏  举报
编辑推荐:
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
阅读排行:
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架
历史上的今天:
2020-08-24 圆的周长和面积推导
点击右上角即可分享
微信分享提示