对话质量评价指标

1. Perplexity (PPL)

   假设长度为 n 的句子 s=(w1,w2,...,wn),它的 perplexity 定义为:

                                                

   先取对数再取指数,则变换为下式:

                                                

   由公式可知,句子概率越大,语言模型越好,迷惑度越小。

   下面是一些 ngram 的概率计算:

   

   

   

 

2. BLEU

   在自然语言处理中的机器翻译任务中, BLEU非常常见, 它是用于评估模型生成的句子(candidate)实际句子(reference)的差异的指标.

   它的取值范围在0.0到1.0之间, 如果两个句子完美匹配(perfect match), 那么BLEU是1.0, 反之, 如果两个句子完美不匹配(perfect mismatch), 那么BLEU为0.0.

   首先给出两个句子计算 n-gram 精确度的公式:

                                              

   神经网络生成的句子是 candidate,给定的标准译文是 reference。

   对于分子:

   1)第一个求和符号统计的是所有的 candidate,因为计算时可能有多个句子,

   2)第二个求和符号统计的是一条 candidate 中所有的 n−gram,而 [公式] 表示某一个 n−gram 在 reference 中的个数。

   所以整个分子就是在给定的 candidate 中有多少个 n-gram 词语出现在 reference 中。

   对于分母:

   前两个求和符号和分子中的含义一样,Count(n-gram') 表示 n−gram′在 candidate 中的个数,综上可知,分母是获得所有的 candidate 中 n-gram 的个数。

   累积 N-Gram 得分指的是为各个 gram 对应的权重加权, 来计算得到一个加权几何平均(weighted geometric mean). 默认情况下, sentence_bleu()corpus_bleu()

   都是计算累积的 4-gram BLEU 分数的, 也称之为BLEU-4.

                                                   

  • BLEU 需要计算译文 1-gram,2-gram,...,N-gram 的精确率,一般 N 设置为 4 即可,公式中的 Pn 指 n-gram 的精确率。
  • Wn 指 n-gram 的权重,一般设为均匀权重,即对于任意 n 都有 Wn = 1/N。
  • BP 是惩罚因子,如果译文的长度小于最短的参考译文,则 BP 小于 1。
  • BLEU 的 1-gram 精确率表示译文忠于原文的程度,而其他 n-gram 表示翻译的流畅程度。

   一个 nltk 的参考代码:

1
2
3
4
5
6
7
8
9
10
from nltk.translate.bleu_score import sentence_bleu
 
 
reference = [['this', 'is', 'small', 'test']]
candidate = ['this', 'is', 'a', 'test']
 
score = sentence_bleu(reference, candidate)
print(score)
score = sentence_bleu(reference, candidate, weights=(0.25, 0.25, 0.25, 0.25))
print(score)

 

3. distinct

   在某些生成场景中(对话,广告文案)等,还需要追求文本的多样性。李纪为的《A diversity-promoting objective function for neural conversation models》

   提出了Distinct指标,后续也被许多人采用。

                                                     

   

                                                                    

   

 

posted @   _yanghh  阅读(1895)  评论(0编辑  收藏  举报
编辑推荐:
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
阅读排行:
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架
点击右上角即可分享
微信分享提示