不定积分

原函数:如果在区间 $I$ 上 $F^{'}(x) = f(x)$,则称 $F(x)$ 为 f(x) 的原函数。

不定积分:在区间 $I$ 上,函数 $f(x)$ 带有任意常数的原函数称为 $f(x)$ 在区间 $I$ 上的不定积分,即

$$\left [\; F(x) + C \;\right ]^{'} = f(x)$$

$$\int f(x)dx = F(x) + C$$

所以不定积分和求导是相互对应的。不定积分或原函数的存在性:

    1)$f(x)$ 在区间 $I$ 上连续,则存在原函数,且原函数也连续。

    2)$f(x)$ 在区间 $I$ 上有第一类间断点时,则无原函数。

    3)含有振荡间断点的函数可能存在原函数。

 

posted @ 2020-07-21 07:36  _yanghh  阅读(924)  评论(0编辑  收藏  举报