pytorch torchvision.ops.roi_align

pytorch的torchvision.ops.roi_align这个算子真的是坑我好多天啊!害我连续加班半个月!二阶段目标检测后面用roi_align来提取特征。
接口官方说明:
https://pytorch.org/vision/stable/generated/torchvision.ops.roi_align.html?highlight=roi_align#torchvision.ops.roi_align

boxes (Tensor[K, 5] or List[Tensor[L, 4]]) – the box coordinates in (x1, y1, x2, y2) format where the regions will be taken from. The coordinate must satisfy 0 <= x1 < x2 and 0 <= y1 < y2. If a single Tensor is passed, then the first column should contain the index of the corresponding element in the batch, i.e. a number in [0, N - 1]. If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i in the batch.

我做的是caffe转pytorch,caffe网络用到了roi_align这个算子。caffe的网络prototxt是这么的:

layer {
  name: "persion_roi_pooling"
  type: "ROIAlignment"
  bottom: "p3_conv"  #[b 128 24 72]
  bottom: "persion_detection_out" #[1 1 18 7]
  top: "persion_roi_pooling" #[18 128 7 7]
  propagate_down: true
  propagate_down: false
  roi_alignment_param {
    pooled_height: 7
    pooled_width: 7
  }
}

这里解释一下,p3_conv是卷积网络的featuremap,其shape是[b 128 24 72]
persion_detection_out是第一阶段输出检测出18个目标,7是[b,label,score,xmin,ymin,xmax,ymax]. 其实roialign里面只需要5个就可以了[b,xmin,ymin,xmax,ymax],label和score用不到。
然后roialign的输出persion_roi_pooling是[18 128 7 7]。
这里就是把之前的batch丢了,现在是18, 18是目标个数。然后后续还是需要卷积做一些回归任务,比如回归深度,然后接入卷积最后的输出的是[18 1 1 1], 然后和gt那边一堆逻辑操作下来也是的shape是[18, 1]. 所以这个就可以接入smoothl1做回归任务了。
这是caffe的,我们只需要搞懂输入输出就可以了。这里注意一下,输入的bottom: "persion_detection_out" #[1 1 18 7],这里xmin,ymin是0.2,0.1之类的相对值。

然后到pytorch这边,网上的示例确实也是这样的:
https://blog.csdn.net/Bit_Coders/article/details/121203584

box = torch.tensor([[0.0,0.375,0.875,0.625]])
然后自然而然的我在我的实现中也这样。

最后整个pytorch弄完毕,不收敛啊,loss巨大!不知道哪里出问题,然后一层层排查,固定caffe输出和pytorch验证。
验证下来就是经过roialign这个算子之后两边不一样!
当初觉得是两个框架实现这么复杂逻辑哪里不一样正常,我就直接用pytorch的训练就可以了。但是loss依旧大不收敛!!!

自闭了,这个任务搞了好久,任务延期再延,加班再加!

这里略过很多。。
最后发现pytorch的roialign不是和网上说的一样啊,他输入的bbox框坐标是需要相对于input的坐标的啊!比如inpu的featuremap的width是24,那么就要求框坐标是[0-23]之间的数!
在pytorch源码里面/pytorch-master/caffe2/operators/roi_align_op.cu

#include "caffe2/operators/roi_align_op.h"

#include <stdio.h>
#include <cfloat>
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/math.h"

namespace caffe2 {

namespace {

template <typename T>
__device__ T bilinear_interpolate(
    const T* bottom_data,
    const int height,
    const int width,
    T y,
    T x) {
  // deal with cases that inverse elements are out of feature map boundary
  if (y < -1.0 || y > height || x < -1.0 || x > width) {
    // empty
    return 0;
  }

  if (y <= 0) {
    y = 0;
  }
  if (x <= 0) {
    x = 0;
  }

  int y_low = (int)y;
  int x_low = (int)x;
  int y_high;
  int x_high;

  if (y_low >= height - 1) {
    y_high = y_low = height - 1;
    y = (T)y_low;
  } else {
    y_high = y_low + 1;
  }

  if (x_low >= width - 1) {
    x_high = x_low = width - 1;
    x = (T)x_low;
  } else {
    x_high = x_low + 1;
  }

  T ly = y - y_low;
  T lx = x - x_low;
  T hy = 1. - ly, hx = 1. - lx;
  // do bilinear interpolation
  T v1 = bottom_data[y_low * width + x_low];
  T v2 = bottom_data[y_low * width + x_high];
  T v3 = bottom_data[y_high * width + x_low];
  T v4 = bottom_data[y_high * width + x_high];
  T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;

  T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);

  return val;
}

template <typename T>
__global__ void RoIAlignForward(
    const int nthreads,
    const T* bottom_data,
    const T spatial_scale,
    const int channels,
    const int height,
    const int width,
    const int pooled_height,
    const int pooled_width,
    const int sampling_ratio,
    const T* bottom_rois,
    int roi_cols,
    T* top_data,
    bool continuous_coordinate) {
  CUDA_1D_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    // RoI could have 4 or 5 columns
    const T* offset_bottom_rois = bottom_rois + n * roi_cols;
    int roi_batch_ind = 0;
    if (roi_cols == 5) {
      roi_batch_ind = offset_bottom_rois[0];
      offset_bottom_rois++;
    }

    // Do not using rounding; this implementation detail is critical
    T roi_offset = continuous_coordinate ? T(0.5) : 0;
    T roi_start_w = offset_bottom_rois[0] * spatial_scale - roi_offset;
    T roi_start_h = offset_bottom_rois[1] * spatial_scale - roi_offset;
    T roi_end_w = offset_bottom_rois[2] * spatial_scale - roi_offset;
    T roi_end_h = offset_bottom_rois[3] * spatial_scale - roi_offset;

    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!continuous_coordinate) { // backward compatibility
      // Force malformed ROIs to be 1x1
      roi_width = c10::cuda::compat::max(roi_width, (T)1.);
      roi_height = c10::cuda::compat::max(roi_height, (T)1.);
    }
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

    const T* offset_bottom_data =
        bottom_data + (roi_batch_ind * channels + c) * height * width;

    // We use roi_bin_grid to sample the grid and mimic integral
    int roi_bin_grid_h = (sampling_ratio > 0)
        ? sampling_ratio
        : ceil(roi_height / pooled_height); // e.g., = 2
    int roi_bin_grid_w =
        (sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);

    // We do average (integral) pooling inside a bin
    const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4

    T output_val = 0.;
    for (int iy = 0; iy < roi_bin_grid_h; iy++) // e.g., iy = 0, 1
    {
      const T y = roi_start_h + ph * bin_size_h +
          static_cast<T>(iy + .5f) * bin_size_h /
              static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
      for (int ix = 0; ix < roi_bin_grid_w; ix++) {
        const T x = roi_start_w + pw * bin_size_w +
            static_cast<T>(ix + .5f) * bin_size_w /
                static_cast<T>(roi_bin_grid_w);

        T val = bilinear_interpolate(
            offset_bottom_data, height, width, y, x);
        output_val += val;
      }
    }
    output_val /= count;

    top_data[index] = output_val;
  }
}

} // namespace

template <>
C10_EXPORT bool RoIAlignOp<float, CUDAContext>::RunOnDevice() {
  auto& X = Input(0); // Input data to pool
  auto& R = Input(1); // RoIs
                      // RoI pooled data

  if (R.numel() == 0) {
    // Handle empty rois
    Output(0, {0, X.dim32(1), pooled_h_, pooled_w_}, at::dtype<float>());
    return true;
  }

  assert(sampling_ratio_ >= 0);

  auto* Y = Output(
      0, {R.dim32(0), X.dim32(1), pooled_h_, pooled_w_}, at::dtype<float>());
  int output_size = Y->numel();
  RoIAlignForward<float>
      <<<CAFFE_GET_BLOCKS(output_size),
         CAFFE_CUDA_NUM_THREADS,
         0,
         context_.cuda_stream()>>>(
          output_size,
          X.data<float>(),
          spatial_scale_,
          X.dim32(1),
          X.dim32(2),
          X.dim32(3),
          pooled_h_,
          pooled_w_,
          sampling_ratio_,
          R.data<float>(),
          R.dim32(1),
          Y->mutable_data<float>(),
          aligned_);
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return true;
}

REGISTER_CUDA_OPERATOR(RoIAlign, RoIAlignOp<float, CUDAContext>);
} // namespace caffe2

using RoIAlignOpFloatCUDA = caffe2::RoIAlignOp<float, caffe2::CUDAContext>;

C10_EXPORT_CAFFE2_OP_TO_C10_CUDA(RoIAlign, RoIAlignOpFloatCUDA);

通过这段代码:

    // Do not using rounding; this implementation detail is critical
    T roi_offset = continuous_coordinate ? T(0.5) : 0;
    T roi_start_w = offset_bottom_rois[0] * spatial_scale - roi_offset;
    T roi_start_h = offset_bottom_rois[1] * spatial_scale - roi_offset;
    T roi_end_w = offset_bottom_rois[2] * spatial_scale - roi_offset;
    T roi_end_h = offset_bottom_rois[3] * spatial_scale - roi_offset;

    T roi_width = roi_end_w - roi_start_w;
    T roi_height = roi_end_h - roi_start_h;
    if (!continuous_coordinate) { // backward compatibility
      // Force malformed ROIs to be 1x1
      roi_width = c10::cuda::compat::max(roi_width, (T)1.);
      roi_height = c10::cuda::compat::max(roi_height, (T)1.);
    }
    T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
    T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);

特别是通过这里,roi_width = c10::cuda::compat::max(roi_width, (T)1.);, 这里还要求roi_width最小值为1.

所以我明白了,这里是认为输入框坐标是原图上面的,然后通过spatial_scale来映射到input大小。比如一般是下采样8倍做roialign,所以框坐标是原图上面坐标,然后spatial_scale放1/8就可以了。

所以网上那些介绍roialign示例的时候输入框还是0.1之类的小数这些都是错误的!当然也有对的,比如下面链接里面提到:

假设候选框坐标为左上角(0,105),右下角:(230,250),原图和featureMap的spaceRatio为32,那么映射到featureMap上的候选框为:左上角:(0,105/32),即为(0,3.28125);右下角:(230/32,250/32),即为(7.1875,7.8125),那么候选框在特征图上的区域即为下图中红色区域。注意,这里并没有对坐标进行取整,因此是精确的坐标,这就解决了问题二

https://zhuanlan.zhihu.com/p/565986126?utm_id=0

ps:当然我改完pytorch这边,和caffe对比,经过roialign输出还是不一样。但是loss正常了。
(⊙o⊙)…
暂时就不深究了吧!

posted @ 2023-01-10 11:23  无左无右  阅读(803)  评论(0编辑  收藏  举报