refinedet tensorRT实现
本文github链接,欢迎star
1.准备工作
首先,要弄清楚自己在做什么,然后一步步的去实现它,在此过程中,要不断验证自己的每个步骤是否正确。验证正确了再往下继续走,不正确就要去排查哪里有问题。
现在是需要把pytorch refinedet转tensorrt。而且是一步步的搭建网络实现。
pytorch refinedet https://github.com/luuuyi/RefineDet.PyTorch
tensorrt https://github.com/wang-xinyu/tensorrtx
我也是刚接触tensorrt,做一件事情之前找个现成例子,跑一跑,再学习实现细节。
我跑通了tensorrtx里面yolov3的demo,这期间花费了很长时间。因为tensorrt实现的是U版的yolov3,https://github.com/ultralytics/yolov3。
这个仓库代码是商用的,实现的质量很高,并且代码里面用了各种奇淫技巧。我首先是把这个纯pytorch的yoloV3代码跑通,并结合论文弄懂了原理。然后再去看tensorrt的复现。
tensorrtx这个仓库里面包含了很多流行网络的实现,都是用tensorrt api一步步搭的。
感谢作者开源了这么优秀的代码,并且一群优秀的人不断贡献着开源。
总结一个大体流程:
(1)要了解网络的每层的实现,数据流流向,nchw大小,卷积核大小。
(2)在pytorch工程里面把权重导出,用16进制导致wts文件,字典格式,层名对应权重。后续tensorRT里面根据对应层名字来索引对应权重。
(3)搭一层网络加载对应权重
(4)先生成engine,再推理。
具体细节后面讲解
给出一些链接:
安装tensorrt教程:
https://github.com/wang-xinyu/tensorrtx/blob/master/tutorials/install.md
一步步搭建tensorrt详细的教程:
https://github.com/wang-xinyu/tensorrtx/blob/master/tutorials/from_pytorch_to_trt_stepbystep_hrnet.md
2.wts权重文件生成
import torch
import torch.nn as nn
import struct
from models.refinedet import build_refinedet
num_classes = 25
path_model = "/data_2/pytorch_refinedet/2021/20210308.pth"
path_save_wts = "./refinedet0312.wts"
input_size = 320
net = build_refinedet('test', input_size, num_classes) # initialize net
net.load_state_dict(torch.load(path_model))
net.eval()
f = open(path_save_wts, 'w')
f.write('{}\n'.format(len(net.state_dict().keys())))
for k, v in net.state_dict().items():
vr = v.reshape(-1).cpu().numpy()
f.write('{} {} '.format(k, len(vr)))
for vv in vr:
f.write(' ')
f.write(struct.pack('>f',float(vv)).hex())
f.write('\n')
print("success generate wts!")
这个基本是用的仓库的代码。加载pth文件,然后保存字典权重wts到本地。
在tensorrt里面解析,解析成类似与字典格式,层名对应权重:
std::map<std::string, Weights> loadWeights(const std::string file) {
std::cout << "Loading weights: " << file << std::endl;
std::map<std::string, Weights> weightMap;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file.");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--)
{
Weights wt{DataType::kFLOAT, nullptr, 0};
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x)
{
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
return weightMap;
}
3.tensorrt 网络搭建
由于原生的pytorch工程网络实现复杂。如下网络的构建:
def build_refinedet(phase, size=320, num_classes=21):
if phase != "test" and phase != "train":
print("ERROR: Phase: " + phase + " not recognized")
return
if size != 320 and size != 512:
print("ERROR: You specified size " + repr(size) + ". However, " +
"currently only RefineDet320 and RefineDet512 is supported!")
return
base_ = vgg(base[str(size)], 3)
extras_ = add_extras(extras[str(size)], size, 1024)
ARM_ = arm_multibox(base_, extras_, mbox[str(size)])
ODM_ = odm_multibox(base_, extras_, mbox[str(size)], num_classes)
TCB_ = add_tcb(tcb[str(size)])
return RefineDet(phase, size, base_, extras_, ARM_, ODM_, TCB_, num_classes)
网络由各个组件来完成,每个组件里面各种循环添加卷积、池化层等。这种方式不利于我们一层层的搭建和调试代码。所以,我就用最笨的方法,就是一层层的写卷积、池化同样实现作者的这个网络。
当然,也是需要把refinedet这个工程看的熟透。所以,我自己按照官方实现的搭的网络就是像下面这样的:
class refinedet_my(nn.Module): # SfSNet = PS-Net in SfSNet_deploy.prototxt
def __init__(self):
# C64
super(refinedet_my, self).__init__()
self.num_classes = 25
self.conv0 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.relu3 = nn.ReLU(inplace=True)
self.maxpool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.relu6 = nn.ReLU(inplace=True)
self.conv7 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.relu8 = nn.ReLU(inplace=True)
self.maxpool9 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv10 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.relu11 = nn.ReLU(inplace=True)
self.conv12 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.relu13 = nn.ReLU(inplace=True)
self.conv14 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.relu15 = nn.ReLU(inplace=True)
self.maxpool16 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)
self.conv17 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.relu18 = nn.ReLU(inplace=True)
self.conv19 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.relu20 = nn.ReLU(inplace=True)
self.conv21 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.relu22 = nn.ReLU(inplace=True)
self.maxpool23 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv24 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.relu25 = nn.ReLU(inplace=True)
self.conv26 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.relu27 = nn.ReLU(inplace=True)
self.conv28 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.relu29 = nn.ReLU(inplace=True)
self.maxpool30 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.conv31 = nn.Conv2d(512, 1024, kernel_size=3, padding=3, dilation=3)
self.relu32 = nn.ReLU(inplace=True)
self.conv33 = nn.Conv2d(1024, 1024, kernel_size=1)
self.relu34 = nn.ReLU(inplace=True)
self.extras0 = nn.Conv2d(1024, 256, kernel_size=1)
self.relu_e0 = nn.ReLU(inplace=True)
self.extras1 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.relu_e1 = nn.ReLU(inplace=True)
self.conv4_3_L2Norm = L2Norm(512, 10)
self.conv5_3_L2Norm = L2Norm(512, 8)
self.arm_loc_0 = nn.Conv2d(512, 12, kernel_size=3, padding=1)
self.arm_loc_1 = nn.Conv2d(512, 12, kernel_size=3, padding=1)
self.arm_loc_2 = nn.Conv2d(1024, 12, kernel_size=3, padding=1)
self.arm_loc_3 = nn.Conv2d(512, 12, kernel_size=3, padding=1)
self.arm_conf_0 = nn.Conv2d(512, 6, kernel_size=3, padding=1)
self.arm_conf_1 = nn.Conv2d(512, 6, kernel_size=3, padding=1)
self.arm_conf_2 = nn.Conv2d(1024, 6, kernel_size=3, padding=1)
self.arm_conf_3 = nn.Conv2d(512, 6, kernel_size=3, padding=1)
self.tcb0_9 = nn.Conv2d(512, 256, 3, padding=1)
self.tcb0_10 = nn.ReLU(inplace=True)
self.tcb0_11 = nn.Conv2d(256, 256, 3, padding=1)
self.tcb0_6 = nn.Conv2d(1024, 256, 3, padding=1)
self.tcb0_7 = nn.ReLU(inplace=True)
self.tcb0_8 = nn.Conv2d(256, 256, 3, padding=1)
self.tcb0_3 = nn.Conv2d(512, 256, 3, padding=1)
self.tcb0_4 = nn.ReLU(inplace=True)
self.tcb0_5 = nn.Conv2d(256, 256, 3, padding=1)
self.tcb0_0 = nn.Conv2d(512, 256, 3, padding=1)
self.tcb0_1 = nn.ReLU(inplace=True)
self.tcb0_2 = nn.Conv2d(256, 256, 3, padding=1)
self.tcb2_0 = nn.ReLU(inplace=True)
self.tcb2_1 = nn.Conv2d(256, 256, 3, padding=1)
self.tcb2_2 = nn.ReLU(inplace=True)
self.tcb2_3 = nn.ReLU(inplace=True)
self.tcb2_4 = nn.Conv2d(256, 256, 3, padding=1)
self.tcb2_5 = nn.ReLU(inplace=True)
self.tcb2_6 = nn.ReLU(inplace=True)
self.tcb2_7 = nn.Conv2d(256, 256, 3, padding=1)
self.tcb2_8 = nn.ReLU(inplace=True)
self.tcb2_9 = nn.ReLU(inplace=True)
self.tcb2_10 = nn.Conv2d(256, 256, 3, padding=1)
self.tcb2_11 = nn.ReLU(inplace=True)
self.tcb1_2 = nn.ConvTranspose2d(256, 256, 2, 2)
self.tcb1_1 = nn.ConvTranspose2d(256, 256, 2, 2)
self.tcb1_0 = nn.ConvTranspose2d(256, 256, 2, 2)
self.odm_loc_0 = nn.Conv2d(256, 12, kernel_size=3, padding=1)
self.odm_loc_1 = nn.Conv2d(256, 12, kernel_size=3, padding=1)
self.odm_loc_2 = nn.Conv2d(256, 12, kernel_size=3, padding=1)
self.odm_loc_3 = nn.Conv2d(256, 12, kernel_size=3, padding=1)
self.odm_conf_0 = nn.Conv2d(256, 3 * self.num_classes, kernel_size=3, padding=1)
self.odm_conf_1 = nn.Conv2d(256, 3 * self.num_classes, kernel_size=3, padding=1)
self.odm_conf_2 = nn.Conv2d(256, 3 * self.num_classes, kernel_size=3, padding=1)
self.odm_conf_3 = nn.Conv2d(256, 3 * self.num_classes, kernel_size=3, padding=1)
self.softmax = nn.Softmax(dim=-1)
def forward(self, inputs):
inputs = inputs.cuda()
sources = list()
tcb_source = list()
x = self.relu1(self.conv0(inputs))
x = self.relu3(self.conv2(x))
x = self.maxpool4(x)
x = self.relu6(self.conv5(x))
x = self.relu8(self.conv7(x))
x = self.maxpool9(x)
x = self.relu11(self.conv10(x))
x = self.relu13(self.conv12(x))
x = self.relu15(self.conv14(x))
x = self.maxpool16(x)
x = self.relu18(self.conv17(x))
x = self.relu20(self.conv19(x))
x = self.relu22(self.conv21(x))
out_conv4_3_L2Norm = x.clone()
out_conv4_3_L2Norm = self.conv4_3_L2Norm(out_conv4_3_L2Norm) ####s_0
sources.append(out_conv4_3_L2Norm)
x = self.maxpool23(x)
x = self.relu25(self.conv24(x))
x = self.relu27(self.conv26(x))
x = self.relu29(self.conv28(x))
out_conv5_3_L2Norm = x.clone()
out_conv5_3_L2Norm = self.conv5_3_L2Norm(out_conv5_3_L2Norm) ####s_1
sources.append(out_conv5_3_L2Norm)
x = self.maxpool30(x)
x = self.relu32(self.conv31(x))
x = self.relu34(self.conv33(x))
sources.append(x)
return x
有一层搭一层,这样还可以随时调试,在forward函数里面想看哪一层输出就可以直接打断点看tensor值。
当然一开始不会一下子写这么多的,一开始都是pytorch里面写一层,然后tensorrt里面搭一层,然后对比两边结果一不一样,一样再继续往下走。
这里有几个问题:
1.需要保证两边送到网络的input一致才能验证网络输出是否一致
2.需要两边加载的权重是一致的才能才能验证网络输出是否一致
对于第一个问题,保证两边送到网络的input一致
pytorch读一张图代码,这张图我本地resize到320大小
img = cv2.imread(path_img).astype(np.float32)
img = img[:, :, (2, 1, 0)] ## bgr --> rgb
img = img / 255.0
img_2 = torch.from_numpy(img).permute(2, 0, 1) ## hwc --> chw
bb0 = img_2.unsqueeze(0)
out = net(img_2.unsqueeze(0))
然后对应的tensorrt里面读图的代码
float data[3 * INPUT_H * INPUT_W];
pr_img = cv::imread(path_img);
for (int i = 0; i < INPUT_H * INPUT_W; i++) {
data[i] = (float)(pr_img.at<cv::Vec3b>(i)[2]) * 1.0 / 255.0;
data[i + INPUT_H * INPUT_W] = (float)(pr_img.at<cv::Vec3b>(i)[1]) * 1.0 / 255.0;
data[i + 2 * INPUT_H * INPUT_W] = (float)(pr_img.at<cv::Vec3b>(i)[0]) * 1.0 / 255.0;
}
这两者是等价的。(i)[2]代表的R通道,opencv读取的图片是BGR的格式。
对于第二个问题,保证两边加载的权重是一致
pytorch加载模型权重接口:
checkpoint = torch.load(path_model, map_location=torch.device('cpu'))
net.load_state_dict(checkpoint, strict=False)
这里面的参数strict,设置为true的时候就是需要加载的pth和网络每一层一致,不一致就会报错退出
设置为false的时候就是需要加载的pth和网络层有一致的就加载,不一致的就不加载。
checkpoint = torch.load(path_model, map_location=torch.device('cpu'))
这个pth通过torch.load之后就是相当于一个字典的格式,名字对应权重。
通过下面的代码,可以打印出网络需要的层名和权重大小。同时也打印出load的模型的层名和shape大小。
net = refinedet_my()
# net.eval()
index = 0
print("=" * 50)
for name, param in list(net.named_parameters()):
print(str(index) + ':', name, param.size())
index += 1
print("=" * 50)
for k, v in net.state_dict().items():
print(k," shape::",v.shape)
print("@" * 50)
checkpoint = torch.load(path_model, map_location=torch.device('cpu'))
import collections
new_state_dict = collections.OrderedDict()
print("--------load pth name----------------------")
for k, v in checkpoint.items():
print(k," shape==",v.shape)
打印如下:
==================================================
0: conv0.weight torch.Size([64, 3, 3, 3])
1: conv0.bias torch.Size([64])
2: conv2.weight torch.Size([64, 64, 3, 3])
3: conv2.bias torch.Size([64])
4: conv5.weight torch.Size([128, 64, 3, 3])
5: conv5.bias torch.Size([128])
6: conv7.weight torch.Size([128, 128, 3, 3])
7: conv7.bias torch.Size([128])
8: conv10.weight torch.Size([256, 128, 3, 3])
9: conv10.bias torch.Size([256])
10: conv12.weight torch.Size([256, 256, 3, 3])
11: conv12.bias torch.Size([256])
12: conv14.weight torch.Size([256, 256, 3, 3])
13: conv14.bias torch.Size([256])
14: conv17.weight torch.Size([512, 256, 3, 3])
15: conv17.bias torch.Size([512])
16: conv19.weight torch.Size([512, 512, 3, 3])
17: conv19.bias torch.Size([512])
18: conv21.weight torch.Size([512, 512, 3, 3])
19: conv21.bias torch.Size([512])
20: conv24.weight torch.Size([512, 512, 3, 3])
21: conv24.bias torch.Size([512])
22: conv26.weight torch.Size([512, 512, 3, 3])
23: conv26.bias torch.Size([512])
24: conv28.weight torch.Size([512, 512, 3, 3])
25: conv28.bias torch.Size([512])
26: conv31.weight torch.Size([1024, 512, 3, 3])
27: conv31.bias torch.Size([1024])
28: conv33.weight torch.Size([1024, 1024, 1, 1])
29: conv33.bias torch.Size([1024])
30: extras0.weight torch.Size([256, 1024, 1, 1])
31: extras0.bias torch.Size([256])
32: extras1.weight torch.Size([512, 256, 3, 3])
33: extras1.bias torch.Size([512])
34: conv4_3_L2Norm.weight torch.Size([512])
35: conv5_3_L2Norm.weight torch.Size([512])
36: arm_loc_0.weight torch.Size([12, 512, 3, 3])
37: arm_loc_0.bias torch.Size([12])
38: arm_loc_1.weight torch.Size([12, 512, 3, 3])
39: arm_loc_1.bias torch.Size([12])
40: arm_loc_2.weight torch.Size([12, 1024, 3, 3])
41: arm_loc_2.bias torch.Size([12])
42: arm_loc_3.weight torch.Size([12, 512, 3, 3])
43: arm_loc_3.bias torch.Size([12])
44: arm_conf_0.weight torch.Size([6, 512, 3, 3])
45: arm_conf_0.bias torch.Size([6])
46: arm_conf_1.weight torch.Size([6, 512, 3, 3])
47: arm_conf_1.bias torch.Size([6])
48: arm_conf_2.weight torch.Size([6, 1024, 3, 3])
49: arm_conf_2.bias torch.Size([6])
50: arm_conf_3.weight torch.Size([6, 512, 3, 3])
51: arm_conf_3.bias torch.Size([6])
52: tcb0_9.weight torch.Size([256, 512, 3, 3])
53: tcb0_9.bias torch.Size([256])
54: tcb0_11.weight torch.Size([256, 256, 3, 3])
55: tcb0_11.bias torch.Size([256])
56: tcb0_6.weight torch.Size([256, 1024, 3, 3])
57: tcb0_6.bias torch.Size([256])
58: tcb0_8.weight torch.Size([256, 256, 3, 3])
59: tcb0_8.bias torch.Size([256])
60: tcb0_3.weight torch.Size([256, 512, 3, 3])
61: tcb0_3.bias torch.Size([256])
62: tcb0_5.weight torch.Size([256, 256, 3, 3])
63: tcb0_5.bias torch.Size([256])
64: tcb0_0.weight torch.Size([256, 512, 3, 3])
65: tcb0_0.bias torch.Size([256])
66: tcb0_2.weight torch.Size([256, 256, 3, 3])
67: tcb0_2.bias torch.Size([256])
68: tcb2_1.weight torch.Size([256, 256, 3, 3])
69: tcb2_1.bias torch.Size([256])
70: tcb2_4.weight torch.Size([256, 256, 3, 3])
71: tcb2_4.bias torch.Size([256])
72: tcb2_7.weight torch.Size([256, 256, 3, 3])
73: tcb2_7.bias torch.Size([256])
74: tcb2_10.weight torch.Size([256, 256, 3, 3])
75: tcb2_10.bias torch.Size([256])
76: tcb1_2.weight torch.Size([256, 256, 2, 2])
77: tcb1_2.bias torch.Size([256])
78: tcb1_1.weight torch.Size([256, 256, 2, 2])
79: tcb1_1.bias torch.Size([256])
80: tcb1_0.weight torch.Size([256, 256, 2, 2])
81: tcb1_0.bias torch.Size([256])
82: odm_loc_0.weight torch.Size([12, 256, 3, 3])
83: odm_loc_0.bias torch.Size([12])
84: odm_loc_1.weight torch.Size([12, 256, 3, 3])
85: odm_loc_1.bias torch.Size([12])
86: odm_loc_2.weight torch.Size([12, 256, 3, 3])
87: odm_loc_2.bias torch.Size([12])
88: odm_loc_3.weight torch.Size([12, 256, 3, 3])
89: odm_loc_3.bias torch.Size([12])
90: odm_conf_0.weight torch.Size([75, 256, 3, 3])
91: odm_conf_0.bias torch.Size([75])
92: odm_conf_1.weight torch.Size([75, 256, 3, 3])
93: odm_conf_1.bias torch.Size([75])
94: odm_conf_2.weight torch.Size([75, 256, 3, 3])
95: odm_conf_2.bias torch.Size([75])
96: odm_conf_3.weight torch.Size([75, 256, 3, 3])
97: odm_conf_3.bias torch.Size([75])
==================================================
conv0.weight shape:: torch.Size([64, 3, 3, 3])
conv0.bias shape:: torch.Size([64])
conv2.weight shape:: torch.Size([64, 64, 3, 3])
conv2.bias shape:: torch.Size([64])
conv5.weight shape:: torch.Size([128, 64, 3, 3])
conv5.bias shape:: torch.Size([128])
conv7.weight shape:: torch.Size([128, 128, 3, 3])
conv7.bias shape:: torch.Size([128])
conv10.weight shape:: torch.Size([256, 128, 3, 3])
conv10.bias shape:: torch.Size([256])
conv12.weight shape:: torch.Size([256, 256, 3, 3])
conv12.bias shape:: torch.Size([256])
conv14.weight shape:: torch.Size([256, 256, 3, 3])
conv14.bias shape:: torch.Size([256])
conv17.weight shape:: torch.Size([512, 256, 3, 3])
conv17.bias shape:: torch.Size([512])
conv19.weight shape:: torch.Size([512, 512, 3, 3])
conv19.bias shape:: torch.Size([512])
conv21.weight shape:: torch.Size([512, 512, 3, 3])
conv21.bias shape:: torch.Size([512])
conv24.weight shape:: torch.Size([512, 512, 3, 3])
conv24.bias shape:: torch.Size([512])
conv26.weight shape:: torch.Size([512, 512, 3, 3])
conv26.bias shape:: torch.Size([512])
conv28.weight shape:: torch.Size([512, 512, 3, 3])
conv28.bias shape:: torch.Size([512])
conv31.weight shape:: torch.Size([1024, 512, 3, 3])
conv31.bias shape:: torch.Size([1024])
conv33.weight shape:: torch.Size([1024, 1024, 1, 1])
conv33.bias shape:: torch.Size([1024])
extras0.weight shape:: torch.Size([256, 1024, 1, 1])
extras0.bias shape:: torch.Size([256])
extras1.weight shape:: torch.Size([512, 256, 3, 3])
extras1.bias shape:: torch.Size([512])
conv4_3_L2Norm.weight shape:: torch.Size([512])
conv5_3_L2Norm.weight shape:: torch.Size([512])
arm_loc_0.weight shape:: torch.Size([12, 512, 3, 3])
arm_loc_0.bias shape:: torch.Size([12])
arm_loc_1.weight shape:: torch.Size([12, 512, 3, 3])
arm_loc_1.bias shape:: torch.Size([12])
arm_loc_2.weight shape:: torch.Size([12, 1024, 3, 3])
arm_loc_2.bias shape:: torch.Size([12])
arm_loc_3.weight shape:: torch.Size([12, 512, 3, 3])
arm_loc_3.bias shape:: torch.Size([12])
arm_conf_0.weight shape:: torch.Size([6, 512, 3, 3])
arm_conf_0.bias shape:: torch.Size([6])
arm_conf_1.weight shape:: torch.Size([6, 512, 3, 3])
arm_conf_1.bias shape:: torch.Size([6])
arm_conf_2.weight shape:: torch.Size([6, 1024, 3, 3])
arm_conf_2.bias shape:: torch.Size([6])
arm_conf_3.weight shape:: torch.Size([6, 512, 3, 3])
arm_conf_3.bias shape:: torch.Size([6])
tcb0_9.weight shape:: torch.Size([256, 512, 3, 3])
tcb0_9.bias shape:: torch.Size([256])
tcb0_11.weight shape:: torch.Size([256, 256, 3, 3])
tcb0_11.bias shape:: torch.Size([256])
tcb0_6.weight shape:: torch.Size([256, 1024, 3, 3])
tcb0_6.bias shape:: torch.Size([256])
tcb0_8.weight shape:: torch.Size([256, 256, 3, 3])
tcb0_8.bias shape:: torch.Size([256])
tcb0_3.weight shape:: torch.Size([256, 512, 3, 3])
tcb0_3.bias shape:: torch.Size([256])
tcb0_5.weight shape:: torch.Size([256, 256, 3, 3])
tcb0_5.bias shape:: torch.Size([256])
tcb0_0.weight shape:: torch.Size([256, 512, 3, 3])
tcb0_0.bias shape:: torch.Size([256])
tcb0_2.weight shape:: torch.Size([256, 256, 3, 3])
tcb0_2.bias shape:: torch.Size([256])
tcb2_1.weight shape:: torch.Size([256, 256, 3, 3])
tcb2_1.bias shape:: torch.Size([256])
tcb2_4.weight shape:: torch.Size([256, 256, 3, 3])
tcb2_4.bias shape:: torch.Size([256])
tcb2_7.weight shape:: torch.Size([256, 256, 3, 3])
tcb2_7.bias shape:: torch.Size([256])
tcb2_10.weight shape:: torch.Size([256, 256, 3, 3])
tcb2_10.bias shape:: torch.Size([256])
tcb1_2.weight shape:: torch.Size([256, 256, 2, 2])
tcb1_2.bias shape:: torch.Size([256])
tcb1_1.weight shape:: torch.Size([256, 256, 2, 2])
tcb1_1.bias shape:: torch.Size([256])
tcb1_0.weight shape:: torch.Size([256, 256, 2, 2])
tcb1_0.bias shape:: torch.Size([256])
odm_loc_0.weight shape:: torch.Size([12, 256, 3, 3])
odm_loc_0.bias shape:: torch.Size([12])
odm_loc_1.weight shape:: torch.Size([12, 256, 3, 3])
odm_loc_1.bias shape:: torch.Size([12])
odm_loc_2.weight shape:: torch.Size([12, 256, 3, 3])
odm_loc_2.bias shape:: torch.Size([12])
odm_loc_3.weight shape:: torch.Size([12, 256, 3, 3])
odm_loc_3.bias shape:: torch.Size([12])
odm_conf_0.weight shape:: torch.Size([75, 256, 3, 3])
odm_conf_0.bias shape:: torch.Size([75])
odm_conf_1.weight shape:: torch.Size([75, 256, 3, 3])
odm_conf_1.bias shape:: torch.Size([75])
odm_conf_2.weight shape:: torch.Size([75, 256, 3, 3])
odm_conf_2.bias shape:: torch.Size([75])
odm_conf_3.weight shape:: torch.Size([75, 256, 3, 3])
odm_conf_3.bias shape:: torch.Size([75])
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
--------load pth name----------------------
vgg.0.weight shape== torch.Size([64, 3, 3, 3])
vgg.0.bias shape== torch.Size([64])
vgg.2.weight shape== torch.Size([64, 64, 3, 3])
vgg.2.bias shape== torch.Size([64])
vgg.5.weight shape== torch.Size([128, 64, 3, 3])
vgg.5.bias shape== torch.Size([128])
vgg.7.weight shape== torch.Size([128, 128, 3, 3])
vgg.7.bias shape== torch.Size([128])
vgg.10.weight shape== torch.Size([256, 128, 3, 3])
vgg.10.bias shape== torch.Size([256])
vgg.12.weight shape== torch.Size([256, 256, 3, 3])
vgg.12.bias shape== torch.Size([256])
vgg.14.weight shape== torch.Size([256, 256, 3, 3])
vgg.14.bias shape== torch.Size([256])
vgg.17.weight shape== torch.Size([512, 256, 3, 3])
vgg.17.bias shape== torch.Size([512])
vgg.19.weight shape== torch.Size([512, 512, 3, 3])
vgg.19.bias shape== torch.Size([512])
vgg.21.weight shape== torch.Size([512, 512, 3, 3])
vgg.21.bias shape== torch.Size([512])
vgg.24.weight shape== torch.Size([512, 512, 3, 3])
vgg.24.bias shape== torch.Size([512])
vgg.26.weight shape== torch.Size([512, 512, 3, 3])
vgg.26.bias shape== torch.Size([512])
vgg.28.weight shape== torch.Size([512, 512, 3, 3])
vgg.28.bias shape== torch.Size([512])
vgg.31.weight shape== torch.Size([1024, 512, 3, 3])
vgg.31.bias shape== torch.Size([1024])
vgg.33.weight shape== torch.Size([1024, 1024, 1, 1])
vgg.33.bias shape== torch.Size([1024])
conv4_3_L2Norm.weight shape== torch.Size([512])
conv5_3_L2Norm.weight shape== torch.Size([512])
extras.0.weight shape== torch.Size([256, 1024, 1, 1])
extras.0.bias shape== torch.Size([256])
extras.1.weight shape== torch.Size([512, 256, 3, 3])
extras.1.bias shape== torch.Size([512])
arm_loc.0.weight shape== torch.Size([12, 512, 3, 3])
arm_loc.0.bias shape== torch.Size([12])
arm_loc.1.weight shape== torch.Size([12, 512, 3, 3])
arm_loc.1.bias shape== torch.Size([12])
arm_loc.2.weight shape== torch.Size([12, 1024, 3, 3])
arm_loc.2.bias shape== torch.Size([12])
arm_loc.3.weight shape== torch.Size([12, 512, 3, 3])
arm_loc.3.bias shape== torch.Size([12])
arm_conf.0.weight shape== torch.Size([6, 512, 3, 3])
arm_conf.0.bias shape== torch.Size([6])
arm_conf.1.weight shape== torch.Size([6, 512, 3, 3])
arm_conf.1.bias shape== torch.Size([6])
arm_conf.2.weight shape== torch.Size([6, 1024, 3, 3])
arm_conf.2.bias shape== torch.Size([6])
arm_conf.3.weight shape== torch.Size([6, 512, 3, 3])
arm_conf.3.bias shape== torch.Size([6])
odm_loc.0.weight shape== torch.Size([12, 256, 3, 3])
odm_loc.0.bias shape== torch.Size([12])
odm_loc.1.weight shape== torch.Size([12, 256, 3, 3])
odm_loc.1.bias shape== torch.Size([12])
odm_loc.2.weight shape== torch.Size([12, 256, 3, 3])
odm_loc.2.bias shape== torch.Size([12])
odm_loc.3.weight shape== torch.Size([12, 256, 3, 3])
odm_loc.3.bias shape== torch.Size([12])
odm_conf.0.weight shape== torch.Size([75, 256, 3, 3])
odm_conf.0.bias shape== torch.Size([75])
odm_conf.1.weight shape== torch.Size([75, 256, 3, 3])
odm_conf.1.bias shape== torch.Size([75])
odm_conf.2.weight shape== torch.Size([75, 256, 3, 3])
odm_conf.2.bias shape== torch.Size([75])
odm_conf.3.weight shape== torch.Size([75, 256, 3, 3])
odm_conf.3.bias shape== torch.Size([75])
tcb0.0.weight shape== torch.Size([256, 512, 3, 3])
tcb0.0.bias shape== torch.Size([256])
tcb0.2.weight shape== torch.Size([256, 256, 3, 3])
tcb0.2.bias shape== torch.Size([256])
tcb0.3.weight shape== torch.Size([256, 512, 3, 3])
tcb0.3.bias shape== torch.Size([256])
tcb0.5.weight shape== torch.Size([256, 256, 3, 3])
tcb0.5.bias shape== torch.Size([256])
tcb0.6.weight shape== torch.Size([256, 1024, 3, 3])
tcb0.6.bias shape== torch.Size([256])
tcb0.8.weight shape== torch.Size([256, 256, 3, 3])
tcb0.8.bias shape== torch.Size([256])
tcb0.9.weight shape== torch.Size([256, 512, 3, 3])
tcb0.9.bias shape== torch.Size([256])
tcb0.11.weight shape== torch.Size([256, 256, 3, 3])
tcb0.11.bias shape== torch.Size([256])
tcb1.0.weight shape== torch.Size([256, 256, 2, 2])
tcb1.0.bias shape== torch.Size([256])
tcb1.1.weight shape== torch.Size([256, 256, 2, 2])
tcb1.1.bias shape== torch.Size([256])
tcb1.2.weight shape== torch.Size([256, 256, 2, 2])
tcb1.2.bias shape== torch.Size([256])
tcb2.1.weight shape== torch.Size([256, 256, 3, 3])
tcb2.1.bias shape== torch.Size([256])
tcb2.4.weight shape== torch.Size([256, 256, 3, 3])
tcb2.4.bias shape== torch.Size([256])
tcb2.7.weight shape== torch.Size([256, 256, 3, 3])
tcb2.7.bias shape== torch.Size([256])
tcb2.10.weight shape== torch.Size([256, 256, 3, 3])
tcb2.10.bias shape== torch.Size([256])
可以看到,我们自定义的网络和加载的pth层名有些许不一样,比如net里面的层名
tcb0_2.weight shape:: torch.Size([256, 256, 3, 3])
tcb0_2.bias shape:: torch.Size([256])
tcb2_1.weight shape:: torch.Size([256, 256, 3, 3])
tcb2_1.bias shape:: torch.Size([256])
对应pth层名
tcb0.2.weight shape== torch.Size([256, 256, 3, 3])
tcb0.2.bias shape== torch.Size([256])
tcb2.1.weight shape== torch.Size([256, 256, 3, 3])
tcb2.1.bias shape== torch.Size([256])
还有其他的,我现在要做的就是把pth的层名改成和net所需要的层名一致,才能加载到net中。对应代码如下:
checkpoint = torch.load(path_model, map_location=torch.device('cpu'))
import collections
new_state_dict = collections.OrderedDict()
for k, v in checkpoint.items():
name = k.replace('vgg.', 'conv')
name = name.replace('extras.', 'extras')
if "arm" in name or "loc" in name or "tcb" in name or "odm" in name:
name = name.replace(".","_",1)
new_state_dict[name] = v
net.load_state_dict(new_state_dict, strict=False)
这样的话就保证了两边加载了一样的权重了。
然后在tensorrt里面搭建对应的操作,类似代码如下
// Creat the engine using only the API and not any parser.
ICudaEngine* createEngine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt) {
INetworkDefinition* network = builder->createNetworkV2(0U);
ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{3, INPUT_H, INPUT_W});
assert(data);
std::map<std::string, Weights> weightMap = loadWeights(path_wts);
Weights emptywts{DataType::kFLOAT, nullptr, 0};
DimsHW maxpool_hw = DimsHW(2,2);
auto lr0 = convRelu(network, weightMap, *data, 64, 3, 1, 1, 0);
auto lr1 = convRelu(network, weightMap, *lr0->getOutput(0), 64, 3, 1, 1, 2);
IPoolingLayer* pool1 = network->addPoolingNd(*lr1->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
assert(pool1);
pool1->setStrideNd(DimsHW{2, 2});
auto lr2 = convRelu(network, weightMap, *pool1->getOutput(0), 128, 3, 1, 1, 5);
auto lr3 = convRelu(network, weightMap, *lr2->getOutput(0), 128, 3, 1, 1, 7);
IPoolingLayer* pool2 = network->addPoolingNd(*lr3->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
assert(pool2);
pool2->setStrideNd(DimsHW{2, 2});
auto lr4 = convRelu(network, weightMap, *pool2->getOutput(0), 256, 3, 1, 1, 10);
auto lr5 = convRelu(network, weightMap, *lr4->getOutput(0), 256, 3, 1, 1, 12);
auto lr6 = convRelu(network, weightMap, *lr5->getOutput(0), 256, 3, 1, 1, 14);
IPoolingLayer* pool3 = network->addPoolingNd(*lr6->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
assert(pool3);
pool3->setStrideNd(DimsHW{2, 2});
auto lr7 = convRelu(network, weightMap, *pool3->getOutput(0), 512, 3, 1, 1, 17);
auto lr8 = convRelu(network, weightMap, *lr7->getOutput(0), 512, 3, 1, 1, 19);
auto lr9 = convRelu(network, weightMap, *lr8->getOutput(0), 512, 3, 1, 1, 21);
IPoolingLayer* pool4 = network->addPoolingNd(*lr9->getOutput(0), PoolingType::kMAX, DimsHW{2, 2});
assert(pool4);
pool4->setStrideNd(DimsHW{2, 2});
auto lr24 = convRelu(network, weightMap, *pool4->getOutput(0), 512, 3, 1, 1, 24);
auto lr26 = convRelu(network, weightMap, *lr24->getOutput(0), 512, 3, 1, 1, 26);
auto lr28 = convRelu(network, weightMap, *lr26->getOutput(0), 512, 3, 1, 1, 28);
4.验证精度
tensorrt比较麻烦,需要先生成engine,然后本地再加载engine推理。
在搭建模型的时候,想验证哪一层就让这一层输出。
auto lr0 = convRelu(network, weightMap, *data, 64, 3, 1, 1, 0);
lr0->getOutput(0)->setName("out");
network->markOutput(*lr0->getOutput(0));
builder->setMaxBatchSize(maxBatchSize);
config->setMaxWorkspaceSize(16 * (1 << 20)); // 16MB
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
std::cout << "Build engine successfully!" << std::endl;
// Don't need the network any more
network->destroy();
// Release host memory
for (auto& mem : weightMap)
{
free((void*) (mem.second.values));
}
return engine;
后续代码会本地生成engine,然后加载跑推理,但是需要改,推理是需要指定输出的大小的。具体见下面代码
void doInference(IExecutionContext& context, float* input, float* output, int batchSize) {
const ICudaEngine& engine = context.getEngine();
// Pointers to input and output device buffers to pass to engine.
// Engine requires exactly IEngine::getNbBindings() number of buffers.
std::cout<<"engine.getNbBindings()==="<<engine.getNbBindings()<<std::endl;
assert(engine.getNbBindings() == 2);//getNbBindings()输入和输出的个数
void* buffers[2];
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
printf("inputIndex=%d\n",inputIndex);
printf("outputIndex=%d\n",outputIndex);
// Create GPU buffers on device
CUDA_CHECK(cudaMalloc(&buffers[inputIndex], batchSize * 3 * INPUT_H_refinedet * INPUT_W_refinedet * sizeof(float)));
const int OUTPUT_SIZE_2 = 1 * 64 * 160 * 160; //大小需要自己知道写这里 分配显存
CUDA_CHECK(cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE_2 * sizeof(float)));
// Create stream
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CUDA_CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H_refinedet * INPUT_W_refinedet * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr); //推理!!!
CUDA_CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE_2 * sizeof(float), cudaMemcpyDeviceToHost, stream)); //输出从cuda给到cpu
cudaStreamSynchronize(stream);
// Release stream and buffers
cudaStreamDestroy(stream);
CUDA_CHECK(cudaFree(buffers[inputIndex]));
CUDA_CHECK(cudaFree(buffers[outputIndex]));
}
然后函数外面就可以output看输出的值和pytorch对比。看看是不是一致的。应该是一致的。
5.不支持的层实现
对于不支持的层需要自己实现,写plugin或者用既有的api实现。
这里我耗费了几天。见下面博客。
【L2norm 层tensorrt api实现】(https://www.cnblogs.com/yanghailin/p/14448829.html)
还有一个softmax也耗费了我大半天时间:
【指定维度softmax 层tensorRT api实现】(https://www.cnblogs.com/yanghailin/p/14486077.html)
6.后处理
后处理是个大坑。
也不叫大坑吧,是有难度。因为需要用到cuda编程。需要把任务分解成可并行的格式来做。
我看到的yolov3里面就是自己写了个plugin来做后处理。
我一开始也准备这么搞的,之前也看了centernet的tensorrt实现。
https://github.com/CaoWGG/TensorRT-CenterNet
https://github.com/CaoWGG/TensorRT-CenterNet/blob/f949252e37b51e60f873808f46d3683f15735e79/src/ctdetNet.cpp#L146
这份代码也比较优秀,基于tensorrt5.0实现的。这份代码是通过tensorrt推理出来cuda的数组,然后自己写的cuda函数完成后处理.
然后我就想,我也可以这么做,写plugin要按照好多格式太麻烦了。
这里还有个问题是refinedet网络出来的是4个tensor,如果要4个输出的话没有看到有人这么做过,但是后面我自己摸索,是可以输出多个tensor的。
arm_loc->getOutput(0)->setName(OUTPUT_BLOB_NAME_arm_loc);
network->markOutput(*arm_loc->getOutput(0));
arm_conf_111->getOutput(0)->setName(OUTPUT_BLOB_NAME_arm_conf);
network->markOutput(*arm_conf_111->getOutput(0));
odm_loc->getOutput(0)->setName(OUTPUT_BLOB_NAME_odm_loc);
network->markOutput(*odm_loc->getOutput(0));
odm_conf->getOutput(0)->setName(OUTPUT_BLOB_NAME_odm_conf);
network->markOutput(*odm_conf->getOutput(0));
定义网络的时候直接多个输出。然后推理的时候,engine.getNbBindings()就是5,context.enqueue(batchSize, buffers, stream, nullptr);这里的buffer就是5维的数据
void doInference(IExecutionContext& context, void* buffers[], cudaStream_t &stream, float* input, std::vector<std::vector<float>> &detections) {
auto start_infer = std::chrono::system_clock::now();
detections.clear();
int batchSize = 1;
const ICudaEngine& engine = context.getEngine();
// Pointers to input and output device buffers to pass to engine.
// Engine requires exactly IEngine::getNbBindings() number of buffers.
// std::cout<<"engine.getNbBindings()==="<<engine.getNbBindings()<<std::endl;
assert(engine.getNbBindings() == 5);
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
const int outputIndex_arm_loc = engine.getBindingIndex(OUTPUT_BLOB_NAME_arm_loc);
const int outputIndex_arm_conf = engine.getBindingIndex(OUTPUT_BLOB_NAME_arm_conf);
const int outputIndex_odm_loc = engine.getBindingIndex(OUTPUT_BLOB_NAME_odm_loc);
const int outputIndex_odm_conf = engine.getBindingIndex(OUTPUT_BLOB_NAME_odm_conf);
// const int outputIndex2 = engine.getBindingIndex("prob2");
// printf("inputIndex=%d\n",inputIndex);
// printf("outputIndex_arm_loc=%d\n",outputIndex_arm_loc);
// printf("outputIndex_arm_conf=%d\n",outputIndex_arm_conf);
// printf("outputIndex_odm_loc=%d\n",outputIndex_odm_loc);
// printf("outputIndex_odm_conf=%d\n",outputIndex_odm_conf);
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CUDA_CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
context.enqueue(batchSize, buffers, stream, nullptr);
所以其实到这里为止,我就得到了4个在cuda上面的tensor,并且数值和pytorch里面是一致的。
看cuda编程看了几天,对应我们这个任务还是无从下手。请教了大神,说尽快和我讨论。然后就没有下文了。
没有办法,我仔细盯着pytorch的后处理实现
def forward(self, num_classes, size, bkg_label, top_k, conf_thresh, nms_thresh,
objectness_thre, keep_top_k,arm_loc_data, arm_conf_data, odm_loc_data, odm_conf_data, prior_data):
"""
Args:
loc_data: (tensor) Loc preds from loc layers
Shape: [batch,num_priors*4]
conf_data: (tensor) Shape: Conf preds from conf layers
Shape: [batch*num_priors,num_classes]
prior_data: (tensor) Prior boxes and variances from priorbox layers
Shape: [1,num_priors,4]
arm_loc_data: torch.Size([1, 6375, 4])
arm_conf_data: torch.Size([1, 6375, 2])
odm_loc_data: torch.Size([1, 6375, 4])
odm_conf_data: torch.Size([1, 6375, 25])
prior_data: torch.Size([6375, 4])
"""
self.num_classes = num_classes
self.background_label = bkg_label
self.top_k = top_k
self.keep_top_k = keep_top_k
# Parameters used in nms.
self.nms_thresh = nms_thresh
if nms_thresh <= 0:
raise ValueError('nms_threshold must be non negative.')
self.conf_thresh = conf_thresh ## 0.01
self.objectness_thre = objectness_thre ## 0.01
self.variance = cfg[str(size)]['variance']
loc_data = odm_loc_data #[1, 6375, 4]
conf_data = odm_conf_data #[1, 6375, 25]
# [1,6375,1] #[1,6375,2] --->>> [1,6375,1]
arm_object_conf = arm_conf_data.data[:, :, 1:]
# [1,6375,1]
no_object_index = arm_object_conf <= self.objectness_thre
conf_data[no_object_index.expand_as(conf_data)] = 0 ##[1, 6375, 25]
num = loc_data.size(0) # 1 batch size: 1
num_priors = prior_data.size(0) #6375
output = torch.zeros(num, self.num_classes, self.top_k, 5)##[1,25,1000,5]
conf_preds = conf_data.view(num, num_priors,
self.num_classes).transpose(2, 1)
####[1,25,6375]
# Decode predictions into bboxes.
for i in range(num):
#[6375,4] [6375,4] [6375,4]
default = decode(arm_loc_data[i], prior_data, self.variance)
default = center_size(default)
#[6375,4] #[6375,4] [6375,4]
decoded_boxes = decode(loc_data[i], default, self.variance)
#[25,6375] For each class, perform nms
conf_scores = conf_preds[i].clone()
#print(decoded_boxes, conf_scores)
for cl in range(1, self.num_classes):
c_mask = conf_scores[cl].gt(self.conf_thresh)
scores = conf_scores[cl][c_mask]
#print(scores.dim())
if scores.size(0) == 0:
continue
l_mask = c_mask.unsqueeze(1).expand_as(decoded_boxes)
boxes = decoded_boxes[l_mask].view(-1, 4)
#或者boxes = decoded_boxes[c_mask].view(-1, 4)
# idx of highest scoring and non-overlapping boxes per class
#print(boxes, scores)
ids, count = nms(boxes, scores, self.nms_thresh, self.top_k)
output[i, cl, :count] = \
torch.cat((scores[ids[:count]].unsqueeze(1),
boxes[ids[:count]]), 1)
flt = output.contiguous().view(num, -1, 5)
_, idx = flt[:, :, 0].sort(1, descending=True)
_, rank = idx.sort(1)
flt[(rank < self.keep_top_k).unsqueeze(-1).expand_as(flt)].fill_(0)
return output
挺复杂的,都是坐标索引,维度变换,想用cuda实现,想想就头疼。cuda上面各个tensor就是一维数组。这咋搞。
然后有一天盯着这段代码,抱着试试的心态,把cuda数据看看能不能转libtorch,因为我libtorch的实现是已经写好的。
然后在cmakelist里面添加libtorch库。
assert(engine.getNbBindings() == 5);
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
const int outputIndex_arm_loc = engine.getBindingIndex(OUTPUT_BLOB_NAME_arm_loc);
const int outputIndex_arm_conf = engine.getBindingIndex(OUTPUT_BLOB_NAME_arm_conf);
const int outputIndex_odm_loc = engine.getBindingIndex(OUTPUT_BLOB_NAME_odm_loc);
const int outputIndex_odm_conf = engine.getBindingIndex(OUTPUT_BLOB_NAME_odm_conf);
// const int outputIndex2 = engine.getBindingIndex("prob2");
// printf("inputIndex=%d\n",inputIndex);
// printf("outputIndex_arm_loc=%d\n",outputIndex_arm_loc);
// printf("outputIndex_arm_conf=%d\n",outputIndex_arm_conf);
// printf("outputIndex_odm_loc=%d\n",outputIndex_odm_loc);
// printf("outputIndex_odm_conf=%d\n",outputIndex_odm_conf);
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CUDA_CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
int m_prior_size = 6375;
torch::Tensor arm_loc = torch::from_blob(buffers[outputIndex_arm_loc],{m_prior_size,4}).cuda().toType(torch::kFloat64).unsqueeze(0);
torch::Tensor arm_conf = torch::from_blob(buffers[outputIndex_arm_conf],{m_prior_size,2}).cuda().toType(torch::kFloat64).unsqueeze(0);
torch::Tensor odm_loc = torch::from_blob(buffers[outputIndex_odm_loc],{m_prior_size,4}).cuda().toType(torch::kFloat64).unsqueeze(0);
torch::Tensor odm_conf = torch::from_blob(buffers[outputIndex_odm_conf],{m_prior_size,25}).cuda().toType(torch::kFloat64).unsqueeze(0);
居然可以啊!!!
厉害了,试了这里可以访问torch::Tensor arm_loc里面数据,并且是对的!
然后我把后处理代码搬过来,是可以跑通出效果图的!
至此,后处理就可以用libtorch,摆脱cuda编程了!
7.性能比较
int8会多检测出很多框,但是评价脚本对多出框这没有惩罚,所以导致精度差不多。
int8多出框导致后处理时间变长。
小弟不才,同时谢谢友情赞助!