遗传算法 商旅问题 c++ GA tsp

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "math.h"
#include "time.h"

#define CITY_NUM 38     //城市数,城市编号是0~CITY_NUM-1
#define POPSIZE 300        //种群个体数
#define MAXVALUE 10000000   //路径最大值上限
#define N 100000//需要根据实际求得的路径值修正
unsigned seed = (unsigned)time(0);
double Hash[CITY_NUM + 1];
typedef struct CityPosition
{
    double x;
    double y;
}CityPosition;

CityPosition CityPos[38] = {
    {11003.611100,42102.500000},{11108.611100,42373.888900},{11133.333300,42885.833300},{11155.833300,42712.500000},{11183.333300,42933.333300},{11297.500000,42853.333300},{11310.277800,42929.444400},{11416.666700,42983.333300},{11423.888900,43000.277800},{11438.333300,42057.222200},{11461.111100,43252.777800},{11485.555600,43187.222200},{11503.055600,42855.277800},{11511.388900,42106.388900},{11522.222200,42841.944400},{11569.444400,43136.666700},{11583.333300,43150.000000},{11595.000000,43148.055600},{11600.000000,43150.000000},{11690.555600,42686.666700},{11715.833300,41836.111100},{11751.111100,42814.444400},{11770.277800,42651.944400},{11785.277800,42884.444400},{11822.777800,42673.611100},{11846.944400,42660.555600},{11963.055600,43290.555600},{11973.055600,43026.111100},{12058.333300,42195.555600},{12149.444400,42477.500000},{12286.944400,43355.555600},{12300.000000,42433.333300},{12355.833300,43156.388900},{12363.333300,43189.166700},{12372.777800,42711.388900},{12386.666700,43334.722200},{12421.666700,42895.555600},{12645.000000,42973.333300}
};

double CityDistance[CITY_NUM][CITY_NUM];//城市距离词典

typedef struct {
    int colony[POPSIZE][CITY_NUM + 1];//城市种群,默认出发城市编号为0,则城市编号的最后一个城市还应该为0
    double fitness[POPSIZE];// 每个个体的适应值,即1/Distance[POPSIZE]
    double Distance[POPSIZE];//每个个体的总路径
    int BestRooting[CITY_NUM + 1];//最优城市路径序列
    double BestFitness;//最优路径适应值
    double BestValue;//最优路径长度
    int BestNum;
}TSP, * PTSP;

/*计算城市距离词典CityDistance[i][j]*/
void CalculatDist()
{
    int i, j;
    double temp1, temp2;
    for (i = 0; i < CITY_NUM; i++) {
        for (j = 0; j <= CITY_NUM; j++) {//最后一个城市还应该返回到出发节点
            temp1 = CityPos[j].x - CityPos[i].x;
            temp2 = CityPos[j].y - CityPos[i].y;
            CityDistance[i][j] = sqrt(temp1 * temp1 + temp2 * temp2);
        }
    }
}
/*数组复制*/
void copy(int a[], int b[])
{
    int i = 0;
    for (i = 0; i < CITY_NUM + 1; i++)
    {
        a[i] = b[i];
    }
}

/*用来检查新生成的节点是否在当前群体中,0号节点是默认出发节点和终止节点*/
bool check(TSP& city, int pop, int num, int k)
{
    int i;
    for (i = 0; i <= num; i++) {
        if (k == city.colony[pop][i])
            return true;//新生成节点存在于已经生成的路径中
    }
    return false;//新生成节点没有存在于已经生成的路径中
}

/****************种群初始化,即为city.colony[i][j]赋值****************/
void InitColony(TSP& city)
{
    int i, j, r;
    for (i = 0; i < POPSIZE; i++) {
        city.colony[i][0] = 0;
        city.colony[i][CITY_NUM] = 0;
        city.BestValue = MAXVALUE;
        city.BestFitness = 0;//适应值越大越好
    }

    for (i = 0; i < POPSIZE; i++)
    {
        for (j = 1; j < CITY_NUM; j++)
        {
            r = rand() % (CITY_NUM - 1) + 1;//产生1~CITY_NUM-1之间的随机数
            while (check(city, i, j, r))//随机产生城市序号,即为city.colony[i][j]赋值
            {
                r = rand() % (CITY_NUM - 1) + 1;
            }

            city.colony[i][j] = r;
        }
    }
}

/*计算适应值,考虑应该在这里面把最优选出来*/
void CalFitness(TSP& city)
{
    int i, j;
    int start, end;
    int Best = 0;
    for (i = 0; i < POPSIZE; i++) {//求每个个体的总路径,适应值
        city.Distance[i] = 0;
        for (j = 1; j <= CITY_NUM; j++) {
            start = city.colony[i][j - 1]; end = city.colony[i][j];
            city.Distance[i] = city.Distance[i] + CityDistance[start][end];//city.Distance[i]每个个体的总路径
        }
        city.fitness[i] = N / city.Distance[i];
        if (city.fitness[i] > city.fitness[Best])//选出最大的适应值,即选出所有个体中的最短路径
            Best = i;
    }
    copy(city.BestRooting, city.colony[Best]);//将最优个体拷贝给city.BestRooting
    city.BestFitness = city.fitness[Best];
    city.BestValue = city.Distance[Best];
    city.BestNum = Best;
}


/****************选择算子:轮盘赌法****************/
void Select(TSP& city)
{
    int TempColony[POPSIZE][CITY_NUM + 1];
    int i, j, t;
    double s;
    double GaiLv[POPSIZE];
    double SelectP[POPSIZE + 1];
    double avg;
    double sum = 0;
    for (i = 0; i < POPSIZE; i++)
    {
        sum += city.fitness[i];
    }
    for (i = 0; i < POPSIZE; i++)
    {
        GaiLv[i] = city.fitness[i] / sum;
    }
    SelectP[0] = 0;
    for (i = 0; i < POPSIZE; i++)
    {
        SelectP[i + 1] = SelectP[i] + GaiLv[i] * RAND_MAX;
    }
    memcpy(TempColony[0], city.colony[city.BestNum], sizeof(TempColony[0]));//void *memcpy(void *dest, const void *src, size_t n)从源src所指的内存地址的起始位置开始拷贝n个字节到目标dest所指的内存地址的起始位置中
    for (t = 1; t < POPSIZE; t++)
    {
        double ran = rand() % RAND_MAX + 1;
        s = (double)ran / 100.0;
        for (i = 1; i < POPSIZE; i++)
        {
            if (SelectP[i] >= s)
                break;
        }
        memcpy(TempColony[t], city.colony[i - 1], sizeof(TempColony[t]));
    }
    for (i = 0; i < POPSIZE; i++)
    {
        memcpy(city.colony[i], TempColony[i], sizeof(TempColony[i]));
    }

}

/****************交叉:头尾不变,中间打乱顺序交叉****************/
void Cross(TSP& city, double pc)//交叉概率是pc
{
    int i, j, t, l;
    int a, b, ca, cb;
    int Temp1[CITY_NUM + 1], Temp2[CITY_NUM + 1];
    for (i = 0; i < POPSIZE; i++)
    {
        double s = ((double)(rand() % RAND_MAX)) / RAND_MAX;
        if (s < pc)
        {
            cb = rand() % POPSIZE;
            ca = cb;
            if (ca == city.BestNum || cb == city.BestNum)//如果遇到最优则直接进行下次循环
                continue;

            l = rand() % 19 + 1;  //1-19
            a = rand() % (CITY_NUM - l) + 1; //1-37

            memset(Hash, 0, sizeof(Hash));//void *memset(void *s, int ch, size_t n);将s中当前位置后面的n个字节 用 ch 替换并返回 s 。
            Temp1[0] = Temp1[CITY_NUM] = 0;
            for (j = 1; j <= l; j++)//打乱顺序即随机,选出来的通过Hash标记为1
            {
                Temp1[j] = city.colony[cb][a + j - 1]; //a+L=2~38 20~38
                Hash[Temp1[j]] = 1;
            }
            for (t = 1; t < CITY_NUM; t++)
            {
                if (Hash[city.colony[ca][t]] == 0)
                {
                    Temp1[j++] = city.colony[ca][t];
                    Hash[city.colony[ca][t]] = 1;
                }
            }
            memcpy(city.colony[ca], Temp1, sizeof(Temp1));
        }
    }

}

/****************变异****************/
double GetFittness(int a[CITY_NUM + 1])
{
    int i, start, end;
    double Distance = 0;
    for (i = 0; i < CITY_NUM; i++)
    {
        start = a[i];   end = a[i + 1];
        Distance += CityDistance[start][end];
    }
    return N / Distance;
}
/*对换变异*/
void Mutation(TSP& city, double pm)//变异概率是pm
{
    int i, k, m;
    int Temp[CITY_NUM + 1];
    for (k = 0; k < POPSIZE; k++)
    {
        double s = ((double)(rand() % RAND_MAX)) / RAND_MAX;//随机产生概率0~1间
        i = rand() % POPSIZE;//随机产生0~POPSIZE之间的数
        if (s < pm && i != city.BestNum)//i!=city.BestNum,即保证最优的个体不变异
        {
            int a, b, t;
            a = (rand() % (CITY_NUM - 1)) + 1;
            b = (rand() % (CITY_NUM - 1)) + 1;
            copy(Temp, city.colony[i]);
            if (a > b)//保证让b>=a
            {
                t = a;
                a = b;
                b = t;
            }
            for (m = a; m < (a + b) / 2; m++)
            {
                t = Temp[m];
                Temp[m] = Temp[a + b - m];
                Temp[a + b - m] = t;
            }

            if (GetFittness(Temp) < GetFittness(city.colony[i]))
            {
                a = (rand() % (CITY_NUM - 1)) + 1;
                b = (rand() % (CITY_NUM - 1)) + 1;
                //copy(Temp,city.colony[i]);
                memcpy(Temp, city.colony[i], sizeof(Temp));
                if (a > b)
                {
                    t = a;
                    a = b;
                    b = t;
                }
                for (m = a; m < (a + b) / 2; m++)
                {
                    t = Temp[m];
                    Temp[m] = Temp[a + b - m];
                    Temp[a + b - m] = t;
                }

                if (GetFittness(Temp) < GetFittness(city.colony[i]))
                {
                    a = (rand() % (CITY_NUM - 1)) + 1;
                    b = (rand() % (CITY_NUM - 1)) + 1;
                    //copy(Temp,city.colony[i]);
                    memcpy(Temp, city.colony[i], sizeof(Temp));
                    if (a > b)
                    {
                        t = a;
                        a = b;
                        b = t;
                    }
                    for (m = a; m < (a + b) / 2; m++)
                    {
                        t = Temp[m];
                        Temp[m] = Temp[a + b - m];
                        Temp[a + b - m] = t;
                    }
                }

            }
            memcpy(city.colony[i], Temp, sizeof(Temp));
        }
    }
}

void OutPut(TSP& city)
{
    int i, j;
    printf("最佳路径为:\n");
    for (i = 0; i <= CITY_NUM; i++)
        printf("%5d", city.BestRooting[i]);
    printf("\n最佳路径值为:%f\n", (city.BestValue));
}


int main()
{
    TSP city;
    double pcross, pmutation;//交叉概率和变异概率
    int MaxEpoc;//最大迭代次数
    int i;
    srand(seed);
    MaxEpoc = 30000;
    pcross = 0.5; pmutation = 0.05;
    CalculatDist();//计算城市距离词典
    InitColony(city);//生成初始种群
    CalFitness(city);//计算适应值,考虑应该在这里面把最优选出来

    for (i = 0; i < MaxEpoc; i++)
    {

        Select(city);//选择(复制):轮盘赌法
        Cross(city, pcross);//交叉
        Mutation(city, pmutation);//变异
        CalFitness(city);//计算适应值
        OutPut(city);
    }

    OutPut(city);//输出
    return 0;
}

读取txt,txt里面的文本格式如下,第一行表示城市数量,最后的1,2,3表示地点的性质,1:capital, 2:regional, 3:country

表示两两地点的每公里多少元,就是距离还要乘以单价等于花费。

100
70 66 3
53 861 2
291 58 1
342 637 3
908 601 2
528 783 3
647 119 1
151 878 3
322 675 1
125 710 3
139 617 1
857 422 2
977 357 2
164 408 3
136 503 1
468 288 2
211 150 1
876 881 3
697 281 2
404 157 2
758 678 3
337 944 1
536 9 1
192 696 3
440 505 2
617 166 3
230 532 2
336 294 2
519 939 2
726 393 2
654 59 3
243 670 2
954 151 1
469 562 2
106 665 2
530 335 1
256 465 1
792 42 2
87 828 2
554 359 3
187 155 2
713 205 1
。。。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "math.h"
#include "time.h"
#include<vector>
#include<iostream>
#include<fstream>
using namespace std;

#define MAXVALUE 10000000   //路径最大值上限


#define MaxEpoc 900000
#define pcross  0.65 //0.5
#define pmutation  0.09 //0.05
#define POPSIZE 4000 //500





#define N 100000//需要根据实际求得的路径值修正
unsigned seed = (unsigned)time(0);
vector<double> Hash;



int city_num_t = 0;
int CITY_NUM;

double cost_matrix[3][3] = {10,7.5,5,
                            7.5,5,2.5,
                            5,2.5,1};


typedef struct CityPosition
{
    double x;
    double y;
    int type;
}CityPosition;



vector<CityPosition> CityPos;

//城市距离词典
vector<vector<double>>CityDistance;


typedef struct {
    vector<vector<int>>colony;//int colony[POPSIZE][CITY_NUM + 1];//城市种群,默认出发城市编号为0,则城市编号的最后一个城市还应该为0
    double fitness[POPSIZE];// 每个个体的适应值,即1/Distance[POPSIZE]
    double Distance[POPSIZE];//每个个体的总路径
    vector<int>BestRooting;//int BestRooting[CITY_NUM + 1];//最优城市路径序列
    double BestFitness;//最优路径适应值
    double BestValue;//最优路径长度
    int BestNum;
}TSP, * PTSP;

/*计算城市距离词典CityDistance[i][j]*/
void CalculatDist()
{
    int i, j;
    double temp1, temp2;
    for (i = 0; i < CITY_NUM; i++) {
        vector<double> v_tmp;
        for (j = 0; j < CITY_NUM; j++) {//最后一个城市还应该返回到出发节点
            temp1 = CityPos[j].x - CityPos[i].x;
            temp2 = CityPos[j].y - CityPos[i].y;
            int type_city_i = CityPos[i].type;
            int type_city_j = CityPos[j].type;
            double per_cost = cost_matrix[type_city_i][type_city_j];
            v_tmp.push_back((sqrt(temp1 * temp1 + temp2 * temp2) * per_cost));
        }
        CityDistance.push_back(v_tmp);
    }
}




/*数组复制*/
void copy(int a[], int b[])
{
    int i = 0;
    for (i = 0; i < CITY_NUM + 1; i++)
    {
        a[i] = b[i];
    }
}

/*数组复制*/
void copy(vector<int>&a, vector<int>b)
{
    a = b;
}

/*用来检查新生成的节点是否在当前群体中,0号节点是默认出发节点和终止节点*/
bool check(TSP& city, int pop, int num, int k)
{
    int i;
    for (i = 0; i <= num; i++) {
        if (k == city.colony[pop][i])
            return true;//新生成节点存在于已经生成的路径中
    }
    return false;//新生成节点没有存在于已经生成的路径中
}

/****************种群初始化,即为city.colony[i][j]赋值****************/
void InitColony(TSP& city)
{
    int i, j, r;
    for (i = 0; i < POPSIZE; i++) {
        city.colony[i][0] = 0;
        city.colony[i][CITY_NUM] = 0;
        city.BestValue = MAXVALUE;
        city.BestFitness = 0;//适应值越大越好
    }

    for (i = 0; i < POPSIZE; i++)
    {
        for (j = 1; j < CITY_NUM; j++)
        {
            r = rand() % (CITY_NUM - 1) + 1;//产生1~CITY_NUM-1之间的随机数
            while (check(city, i, j, r))//随机产生城市序号,即为city.colony[i][j]赋值
            {
                r = rand() % (CITY_NUM - 1) + 1;
            }

            city.colony[i][j] = r;
        }
    }
}

/*计算适应值,考虑应该在这里面把最优选出来*/
void CalFitness(TSP& city)
{
    int i, j;
    int start, end;
    int Best = 0;
    for (i = 0; i < POPSIZE; i++) {//求每个个体的总路径,适应值
        city.Distance[i] = 0;
        for (j = 1; j <= CITY_NUM; j++) {
            start = city.colony[i][j - 1]; end = city.colony[i][j];
            city.Distance[i] = city.Distance[i] + CityDistance[start][end];//city.Distance[i]每个个体的总路径
        }
        city.fitness[i] = N / city.Distance[i];
        if (city.fitness[i] > city.fitness[Best])//选出最大的适应值,即选出所有个体中的最短路径
            Best = i;
    }
    copy(city.BestRooting, city.colony[Best]);//将最优个体拷贝给city.BestRooting
    city.BestFitness = city.fitness[Best];
    city.BestValue = city.Distance[Best];
    city.BestNum = Best;
}


/****************选择算子:轮盘赌法****************/
void Select(TSP& city)
{
    vector<vector<int>>TempColony;
    TempColony.resize(POPSIZE);
    for(int i=0;i<POPSIZE;i++)
    {
        TempColony[i].resize(CITY_NUM + 1);
    }


    int i, j, t;
    double s;
    double GaiLv[POPSIZE];
    double SelectP[POPSIZE + 1];
    double avg;
    double sum = 0;
    for (i = 0; i < POPSIZE; i++)
    {
        sum += city.fitness[i];
    }
    for (i = 0; i < POPSIZE; i++)
    {
        GaiLv[i] = city.fitness[i] / sum;
    }
    SelectP[0] = 0;
    for (i = 0; i < POPSIZE; i++)
    {
        SelectP[i + 1] = SelectP[i] + GaiLv[i] * RAND_MAX;
    }
    TempColony[0] = city.colony[city.BestNum];
    //    memcpy(TempColony[0], city.colony[city.BestNum], sizeof(TempColony[0]));//void *memcpy(void *dest, const void *src, size_t n)从源src所指的内存地址的起始位置开始拷贝n个字节到目标dest所指的内存地址的起始位置中
    for (t = 1; t < POPSIZE; t++)
    {
        double ran = rand() % RAND_MAX + 1;
        s = (double)ran / 100.0;
        for (i = 1; i < POPSIZE; i++)
        {
            if (SelectP[i] >= s)
                break;
        }
        TempColony[t] = city.colony[i - 1];
        //memcpy(TempColony[t], city.colony[i - 1], sizeof(TempColony[t]));
    }
    for (i = 0; i < POPSIZE; i++)
    {
        city.colony[i] = TempColony[i];
        //        memcpy(city.colony[i], TempColony[i], sizeof(TempColony[i]));
    }

}

/****************交叉:头尾不变,中间打乱顺序交叉****************/
void Cross(TSP& city, double pc)//交叉概率是pc
{
    int i, j, t, l;
    int a, b, ca, cb;

    vector<int>Temp1;
    Temp1.resize(CITY_NUM + 1);

    vector<int>Temp2;
    Temp2.resize(CITY_NUM + 1);

    //    int Temp1[CITY_NUM + 1], Temp2[CITY_NUM + 1];
    for (i = 0; i < POPSIZE; i++)
    {
        double s = ((double)(rand() % RAND_MAX)) / RAND_MAX;
        if (s < pc)
        {
            cb = rand() % POPSIZE;
            ca = cb;
            if (ca == city.BestNum || cb == city.BestNum)//如果遇到最优则直接进行下次循环
                continue;

            l = rand() % 19 + 1;  //1-19
            a = rand() % (CITY_NUM - l) + 1; //1-37

            vector<double> abc(CITY_NUM);
            Hash = abc;
            //            memset(Hash, 0, sizeof(Hash));//void *memset(void *s, int ch, size_t n);将s中当前位置后面的n个字节 用 ch 替换并返回 s 。
            Temp1[0] = Temp1[CITY_NUM] = 0;
            for (j = 1; j <= l; j++)//打乱顺序即随机,选出来的通过Hash标记为1
            {
                Temp1[j] = city.colony[cb][a + j - 1]; //a+L=2~38 20~38
                Hash[Temp1[j]] = 1;
            }
            for (t = 1; t < CITY_NUM; t++)
            {
                if (Hash[city.colony[ca][t]] == 0)
                {
                    Temp1[j++] = city.colony[ca][t];
                    Hash[city.colony[ca][t]] = 1;
                }
            }
            city.colony[ca] = Temp1;
            //            memcpy(city.colony[ca], Temp1, sizeof(Temp1));
        }
    }

}

/****************变异****************/
double GetFittness(int a[])
{
    int i, start, end;
    double Distance = 0;
    for (i = 0; i < CITY_NUM; i++)
    {
        start = a[i];   end = a[i + 1];
        Distance += CityDistance[start][end];
    }
    return N / Distance;
}

double GetFittness(vector<int>a)
{
    int i, start, end;
    double Distance = 0;
    for (i = 0; i < CITY_NUM; i++)
    {
        start = a[i];   end = a[i + 1];
        Distance += CityDistance[start][end];
    }
    return N / Distance;
}
/*对换变异*/
void Mutation(TSP& city, double pm)//变异概率是pm
{
    int i, k, m;
    vector<int> Temp;
    Temp.resize(CITY_NUM + 1);
    //    int Temp[CITY_NUM + 1];
    for (k = 0; k < POPSIZE; k++)
    {
        double s = ((double)(rand() % RAND_MAX)) / RAND_MAX;//随机产生概率0~1间
        i = rand() % POPSIZE;//随机产生0~POPSIZE之间的数
        if (s < pm && i != city.BestNum)//i!=city.BestNum,即保证最优的个体不变异
        {
            int a, b, t;
            a = (rand() % (CITY_NUM - 1)) + 1;
            b = (rand() % (CITY_NUM - 1)) + 1;
            copy(Temp, city.colony[i]);
            if (a > b)//保证让b>=a
            {
                t = a;
                a = b;
                b = t;
            }
            for (m = a; m < (a + b) / 2; m++)
            {
                t = Temp[m];
                Temp[m] = Temp[a + b - m];
                Temp[a + b - m] = t;
            }

            if (GetFittness(Temp) < GetFittness(city.colony[i]))
            {
                a = (rand() % (CITY_NUM - 1)) + 1;
                b = (rand() % (CITY_NUM - 1)) + 1;
                //copy(Temp,city.colony[i]);
                Temp = city.colony[i];
                //                memcpy(Temp, city.colony[i], sizeof(Temp));
                if (a > b)
                {
                    t = a;
                    a = b;
                    b = t;
                }
                for (m = a; m < (a + b) / 2; m++)
                {
                    t = Temp[m];
                    Temp[m] = Temp[a + b - m];
                    Temp[a + b - m] = t;
                }

                if (GetFittness(Temp) < GetFittness(city.colony[i]))
                {
                    a = (rand() % (CITY_NUM - 1)) + 1;
                    b = (rand() % (CITY_NUM - 1)) + 1;
                    //copy(Temp,city.colony[i]);
                    Temp = city.colony[i];
                    //                    memcpy(Temp, city.colony[i], sizeof(Temp));
                    if (a > b)
                    {
                        t = a;
                        a = b;
                        b = t;
                    }
                    for (m = a; m < (a + b) / 2; m++)
                    {
                        t = Temp[m];
                        Temp[m] = Temp[a + b - m];
                        Temp[a + b - m] = t;
                    }
                }

            }
            city.colony[i] = Temp;
            //            memcpy(city.colony[i], Temp, sizeof(Temp));
        }
    }
}

void OutPut(TSP& city)
{
    int i, j;
    printf("best path:\n");
    for (i = 0; i <= CITY_NUM; i++)
        printf("%5d", city.BestRooting[i]);
    printf("\nbest path cost:%f\n", (city.BestValue));
}


CityPosition split(const string& str, const string delim) {
    CityPosition city_tmp;
    vector<int> res;
    if("" == str) return city_tmp;
    //先将要切割的字符串从string类型转换为char*类型
    char * strs = new char[str.length() + 1] ; //不要忘了
    strcpy(strs, str.c_str());

    char * d = new char[delim.length() + 1];
    strcpy(d, delim.c_str());

    char *p = strtok(strs, d);
    while(p) {
        string s = p; //分割得到的字符串转换为string类型
        int num = atoi(s.c_str());
        res.push_back(num); //存入结果数组
        p = strtok(NULL, d);
    }
    city_tmp = {res[0],res[1],res[2]};
    return city_tmp;
}



bool Init(string path_txt,vector<CityPosition> &v_city_pos)
{
    fstream infile(path_txt);
    string txt_content;
    int cnt = 0;
    while(getline(infile,txt_content))
    {
        if(0 == cnt)
        {
            city_num_t = stoi(txt_content);
        }else
        {
            CityPosition city_tmp = split(txt_content," ");
            v_city_pos.push_back(city_tmp);
        }
        cnt += 1;
    }
    if(cnt < 2)
    {
        return false;
    }


    CITY_NUM = city_num_t;
    Hash.resize(CITY_NUM);

    return true;
}


int main()
{

    //    string path_txt = "/data_2/tsp200.txt";

    string path_txt;
    cout<<"Please enter the path:"<<endl;
    getline(cin,path_txt);
    cout<<"path="<<path_txt<<endl;

    Init(path_txt,CityPos);


    TSP city;
    city.colony.resize(POPSIZE);
    for(int i=0;i<POPSIZE;i++)
    {
        city.colony[i].resize(CITY_NUM + 1);
    }
    city.BestRooting.resize(CITY_NUM + 1);



    int i;
    srand(seed);


//    double pcross, pmutation;//交叉概率和变异概率
//    int MaxEpoc;//最大迭代次数
//    MaxEpoc = 1000000;//30000;
//    pcross = 0.5;
//    pmutation = 0.05;

    CalculatDist();//计算城市距离词典
    InitColony(city);//生成初始种群
    CalFitness(city);//计算适应值,考虑应该在这里面把最优选出来

    for (i = 0; i < MaxEpoc; i++)
    {

        Select(city);//选择(复制):轮盘赌法
        Cross(city, pcross);//交叉
        Mutation(city, pmutation);//变异
        CalFitness(city);//计算适应值
        if(i % 2000 == 0)
        {
            cout<<"step="<<i<<endl;
            OutPut(city);
        }
    }

    cout<<"Here's the best---Here's the best---Here's the best--Here's the best"<<endl;
    OutPut(city);//输出
    return 0;
}

程序会打印:

step=174000
best path:
    0   47   24   16  117   17  116  123   27  188  109  171  105  175   48  153  194  125   26  198   30  145  139   83  181   41   72  150  154   12  112   80  118  134  166   20  131   98  121   60  132   69    4    7  183  193   58  167   88   29   73  197   82  100   89   62   76  155  122  162   10   99   35    8  196   13  191  101  110  173  106   52   90  104   28  157  160  135  146   61   38  103  138    9  143   54   79   64  199  133   55  168   78   25   14   37   51  115   53  152  136   59   96    2  178  119   45    5   15  128   31  111   65   50  129  130   19   68   84  113  159   34   33  120  127  187   23   91  149  179   75   85  141  107  151   93   42  148   18   74  176  158  142   56   11   94  163  140   40   71    3   92    6  114   95  156  174  124  137  144  126   66   87  184   36  185   67   43   57   70  189  177   39  147  172  169  165   44  108  170  180  190   77   32  102   22   81  195   97   63  186  164  192   21   49  161   46   86    1  182    0
best path cost:10332.477128
step=176000
best path:
    0   47   24   16  117  178  119   45   17  116   88   29   73  197   82  100   89   62   76  155  122  162    5   15  139   83  181   41   72  150  154   12  112   80  142   56   11   26  198   30  145   92  118  134  166   20  131   98  121   66   87  184   36  185   67   60  132   69    4    7  183   55  168   78   25   14   37   51  115   53  152  136   59   96    2   94  163  140   40   71    3  123   27  188  109  171  105  175   48  153  194  125  193   58  167   10   99   35    8  196   13  191  101  110  173  106   52   90  104   28  157  160  135  146   61   38  103  138    9  143   54   79   64  199  133  128   31  111   65   50  129  130   19   68   84  113  159   34   33  120  127  187   23   91  149  179   75   85  141  107  151   93   42  148   18   74  176  158    6  114   95  156  174  124  137  144  126   43   57   70  189  177   39  147  172  169  165   44  108  170  180  190   77   32  102   22   81  195   97   63  186  164  192   21   49  161   46   86    1  182    0
best path cost:10079.972115
step=178000
best path:
    0   47  173  106   52   90  104   28  157  160  135  146   61   38  103  138    9  143   54   79   64   24   16  117  178  119   45   17  116   88   29   73  197   82  100   89   62   76  155  122  162    5   15  139   83  181   41   72  150  154   12  112   80  142   56   11   26  198   30  145   92  118  134  166   20  131   98  121   66   87  184   36  185   67   60  132   69    4    7  183   55  168   78   25   14   37   51  115   53  152  136   59   96    2   94  163  140   40   71    3  123   27  188  109  171  105  175   48  153  194  125  193   58  167   10   99   35    8  196   13  191  101  110  199  133  128   31  111   65   50  129  130   19   68   84  113  159   34   33  120  127  187   23   91  149  179   75   85  141  107  151   93   42  148   18   74  176  158    6  114   95  156  174  124  137  144  126   43   57   70  189  177   39  147  172  169  165   44  108  170  180  190   77   32  102   22   81  195   97   63  186  164  192   21   49  161   46   86    1  182    0
best path cost:10079.972115

我还看到中间的best path cost会小于新出来的,可能代码哪里有点儿小问题。

posted @ 2020-04-26 19:49  无左无右  阅读(371)  评论(0编辑  收藏  举报