Spark分布式编程之全局变量专题【共享变量】
转载自:http://www.aboutyun.com/thread-19652-1-1.html
问题导读
1.spark共享变量的作用是什么?
2.什么情况下使用共享变量?
3.如何在程序中使用共享变量?
4.广播变量源码包含哪些内容?
spark编程中,我们经常会遇到使用全局变量,来累加或则使用全局变量。然而对于分布式编程这个却与传统编程有着很大的区别。不可能在程序中声明一个全局变量,在分布式编程中就可以直接使用。因为代码会分发到多台机器,导致我们认为的全局变量失效。那么spark,spark Streaming该如何实现全局变量。
一般情况下,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本。这些变量被复制到每台机器上,并且这些变量在远程机器上 的所有更新都不会传递回驱动程序。通常跨任务的读写变量是低效的,但是,Spark还是为两种常见的使用模式提供了两种有限的共享变量:广播变量(broadcast variable)和累加器(accumulator)+
1.概念
1.1 广播变量:
广播可以将变量发送到闭包中,被闭包使用。但是,广播还有一个作用是同步较大数据。比如你有一个IP库,可能有几G,在map操作中,依赖这个ip库。那么,可以通过广播将这个ip库传到闭包中,被并行的任务应用。广播通过两个方面提高数据共享效率:
1,集群中每个节点(物理机器)只有一个副本,默认的闭包是每个任务一个副本;
2,广播传输是通过BT下载模式实现的,也就是P2P下载,在集群多的情况下,可以极大的提高数据传输速率。广播变量修改后,不会反馈到其他节点。
1.2 累加器:
累加器是仅仅被相关操作累加的变量,因此可以在并行中被有效地支持。它可以被用来实现计数器和总和。Spark原生地只支持数字类型的累加器,编程者可以添加新类型的支持。如果创建累加器时指定了名字,可以在Spark的UI界面看到。这有利于理解每个执行阶段的进程。(对于Python还不支持)
累加器通过对一个初始化了的变量v调用SparkContext.accumulator(v)来创建。在集群上运行的任务可以通过add或者”+=”方法在累加器上进行累加操作。但是,它们不能读取它的值。只有驱动程序能够读取它的值,通过累加器的value方法。
2.如何使用全局变量
2.1 Java版本:
- package com.Streaming;
- import org.apache.spark.Accumulator;
- import org.apache.spark.SparkConf;
- import org.apache.spark.api.java.JavaPairRDD;
- import org.apache.spark.api.java.function.Function;
- import org.apache.spark.broadcast.Broadcast;
- import org.apache.spark.streaming.Durations;
- import org.apache.spark.streaming.Time;
- import org.apache.spark.streaming.api.java.JavaStreamingContext;
- import org.apache.spark.api.java.function.FlatMapFunction;
- import org.apache.spark.api.java.function.Function2;
- import org.apache.spark.api.java.function.PairFunction;
- import org.apache.spark.streaming.api.java.JavaDStream;
- import org.apache.spark.streaming.api.java.JavaPairDStream;
- import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
- import scala.Tuple2;
- import java.util.*;
- /**
- * 利用广播进行黑名单过滤!
- *
- * 无论是计数器还是广播!都不是想象的那么简单!
- * 联合使用非常强大!!!绝对是高端应用!
- *
- * 如果 联合使用扩展的话,该怎么做!!!
- *
- * ?
- */
- public class BroadcastAccumulator {
- /**
- * 肯定要创建一个广播List
- *
- * 在上下文中实例化!
- */
- private static volatile Broadcast<List<String>> broadcastList = null;
- /**
- * 计数器!
- * 在上下文中实例化!
- */
- private static volatile Accumulator<Integer> accumulator = null;
- public static void main(String[] args) {
- SparkConf conf = new SparkConf().setMaster("local[2]").
- setAppName("WordCountOnlieBroadcast");
- JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(5));
- /**
- * 没有action的话,广播并不会发出去!
- *
- * 使用broadcast广播黑名单到每个Executor中!
- */
- broadcastList = jsc.sc().broadcast(Arrays.asList("Hadoop","Mahout","Hive"));
- /**
- * 全局计数器!用于统计在线过滤了多少个黑名单!
- */
- accumulator = jsc.sparkContext().accumulator(0,"OnlineBlackListCounter");
- JavaReceiverInputDStream<String> lines = jsc.socketTextStream("Master", 9999);
- /**
- * 这里省去flatmap因为名单是一个个的!
- */
- JavaPairDStream<String, Integer> pairs = lines.mapToPair(new PairFunction<String, String, Integer>() {
- @Override
- public Tuple2<String, Integer> call(String word) {
- return new Tuple2<String, Integer>(word, 1);
- }
- });
- JavaPairDStream<String, Integer> wordsCount = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
- @Override
- public Integer call(Integer v1, Integer v2) {
- return v1 + v2;
- }
- });
- /**
- * Funtion里面 前几个参数是 入参。
- * 后面的出参。
- * 体现在call方法里面!
- *
- * 这里直接基于RDD进行操作了!
- */
- wordsCount.foreach(new Function2<JavaPairRDD<String, Integer>, Time, Void>() {
- @Override
- public Void call(JavaPairRDD<String, Integer> rdd, Time time) throws Exception {
- rdd.filter(new Function<Tuple2<String, Integer>, Boolean>() {
- @Override
- public Boolean call(Tuple2<String, Integer> wordPair) throws Exception {
- if (broadcastList.value().contains(wordPair._1)) {
- /**
- * accumulator不应该仅仅用来计数。
- * 可以同时写进数据库或者redis中!
- */
- accumulator.add(wordPair._2);
- return false;
- }else {
- return true;
- }
- };
- /**
- * 这里真的希望 广播和计数器执行的话。要进行一个action操作!
- */
- }).collect();
- System.out.println("广播器里面的值"+broadcastList.value());
- System.out.println("计时器里面的值"+accumulator.value());
- return null;
- }
- });
- jsc.start();
- jsc.awaitTermination();
- jsc.close();
- }
- }
2.2 Scala版本
- package com.Streaming
- import java.util
- import org.apache.spark.streaming.{Duration, StreamingContext}
- import org.apache.spark.{Accumulable, Accumulator, SparkContext, SparkConf}
- import org.apache.spark.broadcast.Broadcast
- /**
- * Created by lxh on 2016/6/30.
- */
- object BroadcastAccumulatorStreaming {
- /**
- * 声明一个广播和累加器!
- */
- private var broadcastList:Broadcast[List[String]] = _
- private var accumulator:Accumulator[Int] = _
- def main(args: Array[String]) {
- val sparkConf = new SparkConf().setMaster("local[4]").setAppName("broadcasttest")
- val sc = new SparkContext(sparkConf)
- /**
- * duration是ms
- */
- val ssc = new StreamingContext(sc,Duration(2000))
- // broadcastList = ssc.sparkContext.broadcast(util.Arrays.asList("Hadoop","Spark"))
- broadcastList = ssc.sparkContext.broadcast(List("Hadoop","Spark"))
- accumulator= ssc.sparkContext.accumulator(0,"broadcasttest")
- /**
- * 获取数据!
- */
- val lines = ssc.socketTextStream("localhost",9999)
- /**
- * 拿到数据后 怎么处理!
- *
- * 1.flatmap把行分割成词。
- * 2.map把词变成tuple(word,1)
- * 3.reducebykey累加value
- * (4.sortBykey排名)
- * 4.进行过滤。 value是否在累加器中。
- * 5.打印显示。
- */
- val words = lines.flatMap(line => line.split(" "))
- val wordpair = words.map(word => (word,1))
- wordpair.filter(record => {broadcastList.value.contains(record._1)})
- val pair = wordpair.reduceByKey(_+_)
- /**
- *这步为什么要先foreachRDD?
- *
- * 因为这个pair 是PairDStream<String, Integer>
- *
- * 进行foreachRDD是为了?
- *
- */
- /* pair.foreachRDD(rdd => {
- rdd.filter(record => {
- if (broadcastList.value.contains(record._1)) {
- accumulator.add(1)
- return true
- } else {
- return false
- }
- })
- })*/
- val filtedpair = pair.filter(record => {
- if (broadcastList.value.contains(record._1)) {
- accumulator.add(record._2)
- true
- } else {
- false
- }
- println("累加器的值"+accumulator.value)
- // pair.filter(record => {broadcastList.value.contains(record._1)})
- /* val keypair = pair.map(pair => (pair._2,pair._1))*/
- /**
- * 如果DStream自己没有某个算子操作。就通过转化transform!
- */
- /* keypair.transform(rdd => {
- rdd.sortByKey(false)//TODO
- })*/
- pair.print()
- ssc.start()
- ssc.awaitTermination()
- }
- }
补充:除了上面提到的两种外,还有一个闭包的概念,这里补充下
闭包 与广播变量对比
有两种方式将数据从driver节点发送到worker节点:通过 闭包 和通过 广播变量 。闭包是随着task的组装和分发自动进行的,而广播变量则是需要程序猿手动操作的,具体地可以通过如下方式操作广播变量(假设 sc 为 SparkContext 类型的对象, bc 为 Broadcast 类型的对象):
可通过 sc.broadcast(xxx) 创建广播变量。
可在各计算节点中(闭包代码中)通过 bc.value 来引用广播的数据。
bc.unpersist() 可将各executor中缓存的广播变量删除,后续再使用时数据将被重新发送。
bc.destroy() 可将广播变量的数据和元数据一同销毁,销毁之后就不能再使用了。
任务闭包包含了任务所需要的代码和数据,如果一个executor数量小于RDD partition的数量,那么每个executor就会得到多个同样的任务闭包,这通常是低效的。而广播变量则只会将数据发送到每个executor一次,并且可以在多个计算操作中共享该广播变量,而且广播变量使用了类似于p2p形式的非常高效的广播算法,大大提高了效率。另外,广播变量由spark存储管理模块进行管理,并以MEMORY_AND_DISK级别进行持久化存储。
什么时候用闭包自动分发数据?情况有几种:
数据比较小的时候。
数据已在driver程序中可用。典型用例是常量或者配置参数。
什么时候用广播变量分发数据?情况有几种:
数据比较大的时候(实际上,spark支持非常大的广播变量,甚至广播变量中的元素数超过java/scala中Array的最大长度限制(2G,约21.5亿)都是可以的)。
数据是某种分布式计算结果。典型用例是训练模型等中间计算结果。
当数据或者变量很小的时候,我们可以在Spark程序中直接使用它们,而无需使用广播变量。
对于大的广播变量,序列化优化可以大大提高网络传输效率,参见本文序列化优化部分。
3.广播变量(Broadcast)源码分析
本文基于Spark 1.0源码分析,主要探讨广播变量的初始化、创建、读取以及清除。
类关系
BroadcastManager类中包含一个BroadcastFactory对象的引用。大部分操作通过调用BroadcastFactory中的方法来实现。
BroadcastFactory是一个Trait,有两个直接子类TorrentBroadcastFactory、HttpBroadcastFactory。这两个子类实现了对HttpBroadcast、TorrentBroadcast的封装,而后面两个又同时集成了Broadcast抽象类。
BroadcastManager的初始化
SparkContext初始化时会创建SparkEnv对象env,这个过程中会调用BroadcastManager的构造方法返回一个对象作为env的成员变量存在:
- val broadcastManager = new BroadcastManager(isDriver, conf, securityManager)
- val broadcastFactoryClass =
- conf.get("spark.broadcast.factory", "org.apache.spark.broadcast.HttpBroadcastFactory")
- broadcastFactory =
- Class.forName(broadcastFactoryClass).newInstance.asInstanceOf[BroadcastFactory]
- // Initialize appropriate BroadcastFactory and BroadcastObject
- broadcastFactory.initialize(isDriver, conf, securityManager)
两个工厂类的initialize方法都是对其相应实体类的initialize方法的调用,下面分开两个类来看。
HttpBroadcast的initialize方法
- def initialize(isDriver: Boolean, conf: SparkConf, securityMgr: SecurityManager) {
- synchronized {
- if (!initialized) {
- bufferSize = conf.getInt("spark.buffer.size", 65536)
- compress = conf.getBoolean("spark.broadcast.compress", true)
- securityManager = securityMgr
- if (isDriver) {
- createServer(conf)
- conf.set("spark.httpBroadcast.uri", serverUri)
- }
- serverUri = conf.get("spark.httpBroadcast.uri")
- cleaner = new MetadataCleaner(MetadataCleanerType.HTTP_BROADCAST, cleanup, conf)
- compressionCodec = CompressionCodec.createCodec(conf)
- initialized = true
- }
- }
- }
除了一些变量的初始化外,主要做两件事情,一是createServer(只有在Driver端会做),其次是创建一个MetadataCleaner对象。
createServer
- private def createServer(conf: SparkConf) {
- broadcastDir = Utils.createTempDir(Utils.getLocalDir(conf))
- server = new HttpServer(broadcastDir, securityManager)
- server.start()
- serverUri = server.uri
- logInfo("Broadcast server started at " + serverUri)
- }
首先创建一个存放广播变量的目录,默认是
- conf.get("spark.local.dir", System.getProperty("java.io.tmpdir")).split(',')(0)
然后初始化一个HttpServer对象并启动(封装了jetty),启动过程中包括加载资源文件,起端口和线程用来监控请求等。这部分的细节在org.apache.spark.HttpServer类中,此处不做展开。
创建MetadataCleaner对象
一个MetadataCleaner对象包装了一个定时计划Timer,每隔一段时间执行一个回调函数,此处传入的回调函数为cleanup:
- private def cleanup(cleanupTime: Long) {
- val iterator = files.internalMap.entrySet().iterator()
- while(iterator.hasNext) {
- val entry = iterator.next()
- val (file, time) = (entry.getKey, entry.getValue)
- if (time < cleanupTime) {
- iterator.remove()
- deleteBroadcastFile(file)
- }
- }
- }
即清楚存在吵过一定时长的broadcast文件。在时长未设定(默认情况)时,不清除:
- if (delaySeconds > 0) {
- logDebug(
- "Starting metadata cleaner for " + name + " with delay of " + delaySeconds + " seconds " +
- "and period of " + periodSeconds + " secs")
- timer.schedule(task, periodSeconds * 1000, periodSeconds * 1000)
- }
TorrentBroadcast的initialize方法
- def initialize(_isDriver: Boolean, conf: SparkConf) {
- TorrentBroadcast.conf = conf // TODO: we might have to fix it in tests
- synchronized {
- if (!initialized) {
- initialized = true
- }
- }
- }
Torrent在此处没做什么,这也可以看出和Http的区别,Torrent的处理方式就是p2p,去中心化。而Http是中心化服务,需要启动服务来接受请求。
创建broadcast变量
调用SparkContext中的 def broadcast[T: ClassTag](value: T): Broadcast[T]方法来初始化一个广播变量,实现如下:
- def broadcast[T: ClassTag](value: T): Broadcast[T] = {
- val bc = env.broadcastManager.newBroadcast[T](value, isLocal)
- cleaner.foreach(_.registerBroadcastForCleanup(bc))
- bc
- }
即调用broadcastManager的newBroadcast方法:
- def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean) = {
- broadcastFactory.newBroadcast[T](value_, isLocal, nextBroadcastId.getAndIncrement())
- }
再调用工厂类的newBroadcast方法,此处返回的是一个Broadcast对象。
HttpBroadcastFactory的newBroadcast
- def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long) =
- new HttpBroadcast[T](value_, isLocal, id)
即创建一个新的HttpBroadcast对象并返回。
构造对象时主要做两件事情:
- HttpBroadcast.synchronized {
- SparkEnv.get.blockManager.putSingle(
- blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
- }
- if (!isLocal) {
- HttpBroadcast.write(id, value_)
- }
1.将变量id和值放入blockManager,但并不通知master
2.调用伴生对象的write方法
- def write(id: Long, value: Any) {
- val file = getFile(id)
- val out: OutputStream = {
- if (compress) {
- compressionCodec.compressedOutputStream(new FileOutputStream(file))
- } else {
- new BufferedOutputStream(new FileOutputStream(file), bufferSize)
- }
- }
- val ser = SparkEnv.get.serializer.newInstance()
- val serOut = ser.serializeStream(out)
- serOut.writeObject(value)
- serOut.close()
- files += file
- }
write方法将对象值按照指定的压缩、序列化写入指定的文件。这个文件所在的目录即是HttpServer的资源目录,文件名和id的对应关系为:
- case class BroadcastBlockId(broadcastId: Long, field: String = "") extends BlockId {
- def name = "broadcast_" + broadcastId + (if (field == "") "" else "_" + field)
- }
TorrentBroadcastFactory的newBroadcast方法
- def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean, id: Long) =
- new TorrentBroadcast[T](value_, isLocal, id)
同样是创建一个TorrentBroadcast对象,并返回。
- TorrentBroadcast.synchronized {
- SparkEnv.get.blockManager.putSingle(
- broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
- }
- if (!isLocal) {
- sendBroadcast()
- }
做两件事情,第一步和Http一样,第二步:
- def sendBroadcast() {
- val tInfo = TorrentBroadcast.blockifyObject(value_)
- totalBlocks = tInfo.totalBlocks
- totalBytes = tInfo.totalBytes
- hasBlocks = tInfo.totalBlocks
- // Store meta-info
- val metaId = BroadcastBlockId(id, "meta")
- val metaInfo = TorrentInfo(null, totalBlocks, totalBytes)
- TorrentBroadcast.synchronized {
- SparkEnv.get.blockManager.putSingle(
- metaId, metaInfo, StorageLevel.MEMORY_AND_DISK, tellMaster = true)
- }
- // Store individual pieces
- for (i <- 0 until totalBlocks) {
- val pieceId = BroadcastBlockId(id, "piece" + i)
- TorrentBroadcast.synchronized {
- SparkEnv.get.blockManager.putSingle(
- pieceId, tInfo.arrayOfBlocks(i), StorageLevel.MEMORY_AND_DISK, tellMaster = true)
- }
- }
- }
可以看出,先将元数据信息缓存到blockManager,再将块信息缓存过去。开头可以看到有一个分块动作,是调用伴生对象的blockifyObject方法:
- def blockifyObject[T](obj: T): TorrentInfo
此方法将对象obj分块(默认块大小为4M),返回一个TorrentInfo对象,第一个参数为一个TorrentBlock对象(包含blockID和block字节数组)、块数量以及obj的字节流总长度。
元数据信息中的blockId为广播变量id+后缀,value为总块数和总字节数。
数据信息是分块缓存,每块的id为广播变量id加后缀及块变好,数据位一个TorrentBlock对象
读取广播变量的值
通过调用bc.value来取得广播变量的值,其主要实现在反序列化方法readObject中
HttpBroadcast的反序列化
- HttpBroadcast.synchronized {
- SparkEnv.get.blockManager.getSingle(blockId) match {
- case Some(x) => value_ = x.asInstanceOf[T]
- case None => {
- logInfo("Started reading broadcast variable " + id)
- val start = System.nanoTime
- value_ = HttpBroadcast.read[T](id)
- /*
- * We cache broadcast data in the BlockManager so that subsequent tasks using it
- * do not need to re-fetch. This data is only used locally and no other node
- * needs to fetch this block, so we don't notify the master.
- */
- SparkEnv.get.blockManager.putSingle(
- blockId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
- val time = (System.nanoTime - start) / 1e9
- logInfo("Reading broadcast variable " + id + " took " + time + " s")
- }
- }
- }
首先查看blockManager中是否已有,如有则直接取值,否则调用伴生对象的read方法进行读取:
- def read[T: ClassTag](id: Long): T = {
- logDebug("broadcast read server: " + serverUri + " id: broadcast-" + id)
- val url = serverUri + "/" + BroadcastBlockId(id).name
- var uc: URLConnection = null
- if (securityManager.isAuthenticationEnabled()) {
- logDebug("broadcast security enabled")
- val newuri = Utils.constructURIForAuthentication(new URI(url), securityManager)
- uc = newuri.toURL.openConnection()
- uc.setAllowUserInteraction(false)
- } else {
- logDebug("broadcast not using security")
- uc = new URL(url).openConnection()
- }
- val in = {
- uc.setReadTimeout(httpReadTimeout)
- val inputStream = uc.getInputStream
- if (compress) {
- compressionCodec.compressedInputStream(inputStream)
- } else {
- new BufferedInputStream(inputStream, bufferSize)
- }
- }
- val ser = SparkEnv.get.serializer.newInstance()
- val serIn = ser.deserializeStream(in)
- val obj = serIn.readObject[T]()
- serIn.close()
- obj
- }
使用serverUri和block id对应的文件名直接开启一个HttpConnection将中心服务器上相应的数据取过来,使用配置的压缩和序列化机制进行解压和反序列化。
这里可以看到,所有需要用到广播变量值的executor都需要去driver上pull广播变量的内容。
取到值后,缓存到blockManager中,以便下次使用。
TorrentBroadcast的反序列化
- private def readObject(in: ObjectInputStream) {
- in.defaultReadObject()
- TorrentBroadcast.synchronized {
- SparkEnv.get.blockManager.getSingle(broadcastId) match {
- case Some(x) =>
- value_ = x.asInstanceOf[T]
- case None =>
- val start = System.nanoTime
- logInfo("Started reading broadcast variable " + id)
- // Initialize @transient variables that will receive garbage values from the master.
- resetWorkerVariables()
- if (receiveBroadcast()) {
- value_ = TorrentBroadcast.unBlockifyObject[T](arrayOfBlocks, totalBytes, totalBlocks)
- /* Store the merged copy in cache so that the next worker doesn't need to rebuild it.
- * This creates a trade-off between memory usage and latency. Storing copy doubles
- * the memory footprint; not storing doubles deserialization cost. Also,
- * this does not need to be reported to BlockManagerMaster since other executors
- * does not need to access this block (they only need to fetch the chunks,
- * which are reported).
- */
- SparkEnv.get.blockManager.putSingle(
- broadcastId, value_, StorageLevel.MEMORY_AND_DISK, tellMaster = false)
- // Remove arrayOfBlocks from memory once value_ is on local cache
- resetWorkerVariables()
- } else {
- logError("Reading broadcast variable " + id + " failed")
- }
- val time = (System.nanoTime - start) / 1e9
- logInfo("Reading broadcast variable " + id + " took " + time + " s")
- }
- }
- }
和Http一样,都是先查看blockManager中是否已经缓存,若没有,则调用receiveBroadcast方法:
- def receiveBroadcast(): Boolean = {
- // Receive meta-info about the size of broadcast data,
- // the number of chunks it is divided into, etc.
- val metaId = BroadcastBlockId(id, "meta")
- var attemptId = 10
- while (attemptId > 0 && totalBlocks == -1) {
- TorrentBroadcast.synchronized {
- SparkEnv.get.blockManager.getSingle(metaId) match {
- case Some(x) =>
- val tInfo = x.asInstanceOf[TorrentInfo]
- totalBlocks = tInfo.totalBlocks
- totalBytes = tInfo.totalBytes
- arrayOfBlocks = new Array[TorrentBlock](totalBlocks)
- hasBlocks = 0
- case None =>
- Thread.sleep(500)
- }
- }
- attemptId -= 1
- }
- if (totalBlocks == -1) {
- return false
- }
- /*
- * Fetch actual chunks of data. Note that all these chunks are stored in
- * the BlockManager and reported to the master, so that other executors
- * can find out and pull the chunks from this executor.
- */
- val recvOrder = new Random().shuffle(Array.iterate(0, totalBlocks)(_ + 1).toList)
- for (pid <- recvOrder) {
- val pieceId = BroadcastBlockId(id, "piece" + pid)
- TorrentBroadcast.synchronized {
- SparkEnv.get.blockManager.getSingle(pieceId) match {
- case Some(x) =>
- arrayOfBlocks(pid) = x.asInstanceOf[TorrentBlock]
- hasBlocks += 1
- SparkEnv.get.blockManager.putSingle(
- pieceId, arrayOfBlocks(pid), StorageLevel.MEMORY_AND_DISK, tellMaster = true)
- case None =>
- throw new SparkException("Failed to get " + pieceId + " of " + broadcastId)
- }
- }
- }
- hasBlocks == totalBlocks
- }
和写数据一样,同样是分成两个部分,首先取元数据信息,再根据元数据信息读取实际的block信息。注意这里都是从blockManager中读取的,这里贴出blockManager.getSingle的分析。
调用栈中最后到BlockManager.doGetRemote方法,中间有一条语句:
- val locations = Random.shuffle(master.getLocations(blockId))
即将存有这个block的节点信息随机打乱,然后使用:
- val data = BlockManagerWorker.syncGetBlock(
- GetBlock(blockId), ConnectionManagerId(loc.host, loc.port))
来获取。
从这里可以看出,Torrent方法首先将广播变量数据分块,并存到BlockManager中;每个节点需要读取广播变量时,是分块读取,对每一块都读取其位置信息,然后随机选一个存有此块数据的节点进行get;每个节点读取后会将包含的快信息报告给BlockManagerMaster,这样本地节点也成为了这个广播网络中的一个peer。
与Http方式形成鲜明对比,这是一个去中心化的网络,只需要保持一个tracker即可,这就是p2p的思想。
广播变量的清除
广播变量被创建时,紧接着有这样一句代码:
- cleaner.foreach(_.registerBroadcastForCleanup(bc))
cleaner是一个ContextCleaner对象,会将刚刚创建的广播变量注册到其中,调用栈为:
- def registerBroadcastForCleanup[T](broadcast: Broadcast[T]) {
- registerForCleanup(broadcast, CleanBroadcast(broadcast.id))
- }
- private def registerForCleanup(objectForCleanup: AnyRef, task: CleanupTask) {
- referenceBuffer += new CleanupTaskWeakReference(task, objectForCleanup, referenceQueue)
等出现广播变量被弱引用时(关于弱引用,可以参考:http://blog.csdn.net/lyfi01/article/details/6415726),则会执行
- cleaner.foreach(_.start())
start方法中会调用keepCleaning方法,会遍历注册的清理任务(包括RDD、shuffle和broadcast),依次进行清理:
- private def keepCleaning(): Unit = Utils.logUncaughtExceptions {
- while (!stopped) {
- try {
- val reference = Option(referenceQueue.remove(ContextCleaner.REF_QUEUE_POLL_TIMEOUT))
- .map(_.asInstanceOf[CleanupTaskWeakReference])
- reference.map(_.task).foreach { task =>
- logDebug("Got cleaning task " + task)
- referenceBuffer -= reference.get
- task match {
- case CleanRDD(rddId) =>
- doCleanupRDD(rddId, blocking = blockOnCleanupTasks)
- case CleanShuffle(shuffleId) =>
- doCleanupShuffle(shuffleId, blocking = blockOnCleanupTasks)
- case CleanBroadcast(broadcastId) =>
- doCleanupBroadcast(broadcastId, blocking = blockOnCleanupTasks)
- }
- }
- } catch {
- case e: Exception => logError("Error in cleaning thread", e)
- }
- }
- }
doCleanupBroadcast调用以下语句:
- broadcastManager.unbroadcast(broadcastId, true, blocking)
然后是:
- def unbroadcast(id: Long, removeFromDriver: Boolean, blocking: Boolean) {
- broadcastFactory.unbroadcast(id, removeFromDriver, blocking)
- }
每个工厂类调用其对应实体类的伴生对象的unbroadcast方法。
HttpBroadcast中的变量清除
- def unpersist(id: Long, removeFromDriver: Boolean, blocking: Boolean) = synchronized {
- SparkEnv.get.blockManager.master.removeBroadcast(id, removeFromDriver, blocking)
- if (removeFromDriver) {
- val file = getFile(id)
- files.remove(file)
- deleteBroadcastFile(file)
- }
- }
1是删除blockManager中的缓存,2是删除本地持久化的文件
TorrentBroadcast中的变量清除
- def unpersist(id:Long, removeFromDriver:Boolean, blocking:Boolean)=synchronized{
- SparkEnv.get.blockManager.master.removeBroadcast(id, removeFromDriver, blocking)
- }
小结
Broadcast可以使用在executor端多次使用某个数据的场景(比如说字典),Http和Torrent两种方式对应传统的CS访问方式和P2P访问方式,当广播变量较大或者使用较频繁时,采用后者可以减少driver端的压力。
参考:
http://blog.csdn.net/asongoficeandfire/article/details/37584643
https://endymecy.gitbooks.io/spa ... ared-variables.html