tensorflow-简单的神经网络
本次笔记是关于tensorflow1的代码,由于接触不久没有跟上2.0版本,这个代码是通过简单的神经网络做一个非线性回归任务,(如果用GPU版本的话第一次出错就重启)
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 使用numpy生成200个随机点,200行1列 x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis] noise = np.random.normal(0., 0.02, x_data.shape) y_data = np.square(x_data) + noise # 定义两个placeholder x = tf.placeholder(tf.float32, [None, 1]) y = tf.placeholder(tf.float32, [None, 1]) # 定义神经网络中间层 Weights_L1 = tf.Variable(tf.random_normal([1, 10])) #1行10列 biases_L1 = tf.Variable(tf.zeros([1, 10])) #1行10列 Wx_plus_b_L1 = tf.matmul(x, Weights_L1) + biases_L1 L1 = tf.nn.tanh(Wx_plus_b_L1) #经过run后L1变成200行10列 # 定义神经网络输出层 Weights_L2 = tf.Variable(tf.random_normal([10, 1])) biases_L2 = tf.Variable(tf.zeros([1, 1])) Wx_plus_b_L2 = tf.matmul(L1, Weights_L2) + biases_L2 prediction = tf.nn.tanh(Wx_plus_b_L2) #经过run后输出预测值为200行1列 # 二次代价函数 loss = tf.reduce_mean(tf.square(y - prediction)) # 使用梯度下降法训练 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for _ in range(2000): sess.run(train_step, feed_dict={x: x_data, y: y_data}) # 获得预测值 prediction_value = sess.run(prediction, feed_dict={x: x_data}) # 画图 plt.figure() plt.scatter(x_data, y_data) plt.plot(x_data, prediction_value, 'r-', lw=5) plt.show()