tensorflow-简单的神经网络

 本次笔记是关于tensorflow1的代码,由于接触不久没有跟上2.0版本,这个代码是通过简单的神经网络做一个非线性回归任务,(如果用GPU版本的话第一次出错就重启)

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

# 使用numpy生成200个随机点,200行1列
x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]
noise = np.random.normal(0., 0.02, x_data.shape)
y_data = np.square(x_data) + noise

# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 1])
y = tf.placeholder(tf.float32, [None, 1])

# 定义神经网络中间层
Weights_L1 = tf.Variable(tf.random_normal([1, 10])) #1行10列
biases_L1 = tf.Variable(tf.zeros([1, 10])) #1行10列
Wx_plus_b_L1 = tf.matmul(x, Weights_L1) + biases_L1
L1 = tf.nn.tanh(Wx_plus_b_L1)  #经过run后L1变成200行10列

# 定义神经网络输出层
Weights_L2 = tf.Variable(tf.random_normal([10, 1]))
biases_L2 = tf.Variable(tf.zeros([1, 1]))
Wx_plus_b_L2 = tf.matmul(L1, Weights_L2) + biases_L2
prediction = tf.nn.tanh(Wx_plus_b_L2)  #经过run后输出预测值为200行1列

# 二次代价函数
loss = tf.reduce_mean(tf.square(y - prediction))
# 使用梯度下降法训练
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for _ in range(2000):
        sess.run(train_step, feed_dict={x: x_data, y: y_data})

    # 获得预测值
    prediction_value = sess.run(prediction, feed_dict={x: x_data})
    # 画图
    plt.figure()
    plt.scatter(x_data, y_data)
    plt.plot(x_data, prediction_value, 'r-', lw=5)
    plt.show()

 

posted @ 2019-11-19 20:58  yg_staring  阅读(150)  评论(0编辑  收藏  举报