机器学习之模型拟合效果的判断笔记
对于m个样本
某模型的估计值为
计算样本的总平方和TSS(Total Sum of Squares):
计算残差平方和RSS(Residual Sum of Squares):
RSS即误差平方和SSE(Sum of Squares for Error)
定义 R2=1-RSS/TSS
R2越大,拟合效果越好
R2的最优值为1
若预测值恒为样本期望,R2为0
亦可定义ESS(Explained Sum of Squares):
TSS=ESS+RSS
只有在无偏估计时上述等式才成立,否则,TSS≥ESS+RSS
ESS又称回归平方和SSR(Sum of Squares for Regression)