Loading

二分查找详解

将二分查找问题分为两种情况讨论,一种是有序序列中不存在重复元组,另一种是有序序列中存在重复元素

一、不存在重复元素

分为三种情况讨论,>=(大于或者等于)、>(大于)和<=(小于或者等于)
有序序列为{1, 3, 4, 5, 7, 8, 9, 10, 12}

大于或者等于target

可以用lower_bound函数代替
代码如下:

#include<bits/stdc++.h>
using namespace std;
int main(){
    vector<int> a = {1, 3, 4, 5, 7, 8, 9, 10, 12};
    int n = (int)a.size();
    int target;
    function<int(int)> found = [&](int target){
        int left = 0, right = n - 1;
        while(left < right){
            int mid = left + (right - left) / 2;
            if(a[mid] == target){
                return mid;
            }else if(a[mid] < target){
                left = mid + 1;
            }else{
                right = mid;
            }
        }
        return left;
    };
    while(cin >> target){
        cout << found(target) << endl;
    }
    return 0;
}

注意以下几点:

  1. 当a[mid]等于target时,直接返回mid;
  2. 当a[mid]小于target时,left = mid + 1;
  3. 当a[mid]大于target时,right = mid;
  4. 循环条件是left < right,否则会出现死循环的情况。

大于target

可以用upper_bound函数代替
代码如下:

#include<bits/stdc++.h>
using namespace std;
int main(){
    vector<int> a = {1, 3, 4, 5, 7, 8, 9, 10, 12};
    int n = (int)a.size();
    int target;
    function<int(int)> found = [&](int target){
        int left = 0, right = n - 1;
        while(left < right){
            int mid = left + (right - left) / 2;
            if(a[mid] <= target){
                left = mid + 1;
            }else{
                right = mid;
            }
        }
        return left;
    };
    while(cin >> target){
        cout << found(target) << endl;
    }
    return 0;
}

注意以下几点:

  1. 当a[mid]小于或者等于target时,left = mid + 1;
  2. 当a[mid]大于target时,right = mid;
  3. 循环条件是left < right,否则会出现死循环的情况。

小于或者等于target

相比于大于target的情况,只需要将返回值改为left - 1即可
代码如下:

#include<bits/stdc++.h>
using namespace std;
int main(){
    vector<int> a = {1, 3, 4, 5, 7, 8, 9, 10, 12};
    int n = (int)a.size();
    int target;
    function<int(int)> found = [&](int target){
        int left = 0, right = n - 1;
        while(left < right){
            int mid = left + (right - left) / 2;
            if(a[mid] <= target){
                left = mid + 1;
            }else{
                right = mid;
            }
        }
        return left - 1;
    };
    while(cin >> target){
        cout << found(target) << endl;
    }
    return 0;
}

二、存在重复元素

分为两种情况讨论,寻找第一个小于或者等于target的位置和第一个大于target的位置
有序序列为{1, 3, 3, 4, 5, 5, 7, 8, 9, 10, 12}

第一个大于target的位置

这种情况跟不存在重复元素下对应的情况一致,直接套用上面的代码即可

#include<bits/stdc++.h>
using namespace std;
int main(){
    vector<int> a = {1, 3, 3, 4, 5, 5, 7, 8, 9, 10, 12};
    int n = (int)a.size();
    int target;
    function<int(int)> found = [&](int target){
        int left = 0, right = n - 1;
        while(left < right){
            int mid = left + (right - left) / 2;
            if(a[mid] <= target){
                left = mid + 1;
            }else{
                right = mid;
            }
        }
        return left;
    };
    while(cin >> target){
        cout << found(target) << endl;
    }
    return 0;
}

第一个大于或者等于target的位置

代码如下:

#include<bits/stdc++.h>
using namespace std;
int main(){
    vector<int> a = {1, 3, 3, 4, 5, 5, 7, 8, 9, 10, 12};
    int n = (int)a.size();
    int target;
    function<int(int)> found = [&](int target){
        int left = 0, right = n - 1;
        while(left < right){
            int mid = left + (right - left) / 2;
            if(a[mid] == target){
                if(mid == left || a[mid - 1] < target){
                    return mid;
                }else{
                    right = mid;
                }
            }else if(a[mid] < target){
                left = mid + 1;
            }else{
                right = mid;
            }
        }
        return left;
    };
    while(cin >> target){
        cout << found(target) << endl;
    }
    return 0;
}

相比于不存在重复元素时对应的情况,需要对a[mid] == target的情况展开讨论,讨论情况如下:

  1. 如果mid恰好是最左边left位置的元素,那么直接返回mid即可
  2. 如果mid不是最左边left位置的元素,但是mid左边的第一个元素小于target,即a[mid - 1] < target,那么也是直接返回mid即可
  3. 其余情况下,right = mid。
posted @ 2021-12-16 20:52  天使的羽翼  阅读(92)  评论(0编辑  收藏  举报