MapReduce详解
MapReduce定义
MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。
MapReduce核心功能是将 用户编写的业务逻辑代码 和 自带默认组件 整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。
一个MapReduce编程模型中只能包含一个Map阶段或一个Reduce阶段,或者只有Map阶段。如果用户的业务非常复杂,那就只能多个MapReduce程序串行运行。
WordCount例子
WordCount编程实现思路:
- Map阶段的核心:把输入的数据经过切割,全部标记1,因此输出就是<单词,1>。
- shuffle阶段核心:经过MapReduce程序内部自带默认的排序分组等功能,把key相同的单词会作为一组数据构成新的KV键值对。
- Reduce阶段核心:处理shuffle完的一组数据,该组数据就是该单词所有的键值对。对所有的1进行累加求和,就是单词的总次数。
MapReduce优缺点
优点
-
MapReduce易于编程
它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得MapReduce编程变得非常流行。 -
良好的扩展性
当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。 -
高容错性
MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。 -
适合PB级以上海量数据的离线处理
可以实现上千台服务器集群并发工作,提供数据处理能力。
缺点
-
不擅长实时计算
MapReduce无法像MySQL一样,在毫秒或者秒级内返回结果。 -
不擅长流式计算
流式计算的输入数据是动态的,而MapReduce的输入数据集是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的。 -
不擅长DAG(有向无环图)计算
多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的低下。但是Spark擅长DAG(有向无环图)计算,其计算结果是在内存中的,速度更快。
MapReduce核心思想
(1)分布式的运算程序往往需要分成至少2个阶段。
(2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。
(3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。
(4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。
总结:分析WordCount数据流走向深入理解MapReduce核心思想。
MapReduce进程
一个完整的MapReduce程序在分布式运行时有三类实例进程:
(1)MrAppMaster:负责整个程序的过程调度及状态协调。
(2)MapTask:负责Map阶段的整个数据处理流程。
(3)ReduceTask:负责Reduce阶段的整个数据处理流程。
MapReduce编程规范
用户编写的程序分成三个部分:Mapper、Reducer和Driver。
- Mapper阶段
(1)用户自定义的Mapper要继承自己的父类
(2)Mapper的输入数据是KV对的形式(KV的类型可以自定义)
(3)Mapper中的业务逻辑写在map()方法中
(4)Mapper的输出数据是KV对的形式(KV的类型可自定义)
(5)map()方法(MapTask进程)对每一个 <K,v> 调用一次【可以理解为有多少行,就读取多少次】
- Reduce阶段
(1)用户自定义的Reduce要继承自己的父类
(2)Reduce的输入数据类型对应Mapper的输出数据类型,也是KV
(3)Reduce中的业务逻辑写在reduce()方法中
(4)ReduceTask进程对每一组相同k的<k,v>组调用一次reduce()方法
- Driver阶段
相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是封装了MapReduce程序相关运行参数的job对象
Hadoop序列化
序列化概述
什么是序列化
序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。
反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。
为什么要序列化
一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。,举个例子,如果一个文件过大,单个节点处理不过来,就需要其他的机器协同处理
为什么不用Java的序列化
Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop自己开发了一套序列化机制(Writable)。
Hadoop序列化特点
(1)紧凑 :高效使用存储空间。
(2)快速:读写数据的额外开销小。
(3)互操作:支持多语言的交互
MapReduce框架原理
InputFormat数据输入
切片与MapTask并行度决定机制
MapTask的并行度决定Map阶段的任务处理并发度,进而影响到整个Job的处理速度。
思考:1G的数据,启动8个MapTask,可以提高集群的并发处理能力。那么1K的数据,也启动8个MapTask,会提高集群性能吗?MapTask并行任务是否越多越好呢?哪些因素影响了MapTask并行度?
MapTask并行度决定机制
数据块:Block是HDFS物理上把数据分成一块一块。数据块是HDFS存储数据单位。
数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行存储。数据切片是MapReduce程序计算输入数据的单位,一个切片会对应启动一个MapTask。
FileInputFormat切片源码流程解析
TextInputFormat
在运行MapReduce程序时,输入的文件格式包括:基于行的日志文件、二进制格式文件、数据库表等。
那么,针对不同的数据类型,FileInputFormat包含了常见的接口实现类:
TextInputFormat、KeyValueTextInputFormat、NLineInputFormat、CombineTextInputFormat和自定义InputFormat等。
** TextInputFormat**
TextInputFormat是默认的FileInputFormat实现类。按行读取每条记录。键是存储该行在整个文件中的起始字节偏移量, LongWritable类型。值是这行的内容,不包括任何行终止符(换行符和回车符),Text类型。
举个例子:
比如,一个分片包含了如下4条文本记录。
Rich learning form
Intelligent learning engine
Learning more convenient
From the real demand for more close to the enterprise
每条记录表示为以下键/值对:
(0,Rich learning form)
(20,Intelligent learning engine)
(49,Learning more convenient)
(74,From the real demand for more close to the enterprise)
CombineTextInputFormat切片机制
框架默认的TextInputFormat切片机制是对任务按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个MapTask,这样如果有大量小文件,就会产生大量的MapTask,处理效率极其低下。
应用场景:
CombineTextInputFormat用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个MapTask处理。
虚拟存储切片最大值设置:
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m
注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。
切片机制:
生成切片过程包括:虚拟存储过程和切片过程二部分。
-
(1)虚拟存储过程:
将输入目录下所有文件大小,依次和设置的setMaxInputSplitSize值比较,如果不大于设置的最大值,逻辑上划分一个块。
如果输入文件大于设置的最大值且大于两倍,那么以最大值切割一块;
当剩余数据大小超过设置的最大值且不大于最大值2倍,此时将文件均分成2个虚拟存储块(防止出现太小切片)。例如setMaxInputSplitSize值为4M,输入文件大小为8.02M,则先逻辑上分成一个4M。剩余的大小为4.02M,如果按照4M逻辑划分,就会出现0.02M的小的虚拟存储文件,所以将剩余的4.02M文件切分成(2.01M和2.01M)两个文件。
-
(2)切片过程:
- (a)判断虚拟存储的文件大小是否大于setMaxInputSplitSize值,大于等于则单独形成一个切片。
- (b)如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。
- (c)测试举例:有4个小文件大小分别为1.7M、5.1M、3.4M以及6.8M这四个小文件,则虚拟存储之后形成6个文件块,大小分别为:
1.7M,(2.55M、2.55M),3.4M以及(3.4M、3.4M)
最终会形成3个切片,大小分别为:
(1.7+2.55)M,(2.55+3.4)M,(3.4+3.4)M
MapReduce工作流程
上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:
(1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中
(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
(3)多个溢出文件会被合并成大的溢出文件
(4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序
(5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据
(6)ReduceTask会抓取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)
(7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)
注意:
(1)Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。
(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M。
Shuffle机制
Map方法之后,Reduce方法之前的数据处理过程称之为Shuffle。
Shuffle的本意是洗牌、混洗的意思,把一组有规则的数据尽量打乱成无序无规则的数据,而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将Map端的无规则的输出按照指定的额规则“打乱”成具有一定规则的数据,以便Reduce端接收处理。
Partition分区
WritableComparable排序
排序是MapReduce框架中最重要的操作之一
MapTask和ReduceTask均会对数据按照key进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。
默认排序是按照字典顺序排序,且实现该排序的方法是快速排序。
对于MapTask,它会将处理结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次快速排序,并将这些有序数据溢写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行归并排序。
对于ReduceTask,它从每个MapTask上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写到磁盘上,否则存储在内存中。
如果磁盘上文件数目达到一定阈值,则进行一次归并排序以生成一个更大文件;
如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据溢写到磁盘上。
当所有数据拷贝完毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序。
排序分类
(1)部分排序
MapReduce根据输入记录的键,对数据集排序,保证输出的每个文件内部有序。
(2)全排序
最终输出结果只有一个文件,且文件内部有序。实现方式是设置一个ReduceTask。但该方法在处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce所提供的并行架构。
(3)辅助排序(GroupingComparator分组)
在Reduce端对key进行分组。应用于:在接收的key为bean对象时,想让一个或几个字段相同(全部字段比较不同)的key进入同一个Reduce方法时,可以采用分组排序
(4)二次排序
在自定义排序过程中,如果compareTo中的判断条件为两个即为二次排序。比如:手机有上行、下行、总流量,按总流量排序,如果总流量相同,就按上行或下行流量排序
Combiner合并
OutputFormat数据输出
MapTask工作机制
(1)Read阶段:MapTask通过InputFormat获得的RecordReader,从输入InputSplit中解析出一个个key/value。【这里的k/v是(偏移量,一行数据)】
(2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。【这里的k/v是处理后的,比如(单词,1)】
(3)Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。
(4)Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。
溢写阶段详情:
步骤1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号Partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。
步骤2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。
步骤3:将分区数据的元信息写到内存索引数据结构SpillRecord中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。
(5)Merge阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。
当所有数据处理完后,MapTask会将所有临时文件合并成一个大文件,并保存到文件output/file.out中,同时生成相应的索引文件output/file.out.index。
在进行文件合并过程中,MapTask以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并mapreduce.task.io.sort.factor(默认10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。
让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。
ReduceTask工作机制
(1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
(2)Sort阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。
(3)Reduce阶段:reduce()函数将计算结果写到HDFS上。
ReduceTask并行度决定机制
Shuffle机制弊端
Shuffle是MapReduce程序的核心和精髓,但是也是MapReduce被诟病最多的地方,MapReduce相比比较于Spark、Flink计算引擎慢的原因,跟Shuffle机制有很大关系。这是因为Shuffle中频繁涉及到数据在内存和磁盘之间多次往复。
数据压缩
概述
1)压缩的好处和坏处
压缩的优点:以减少磁盘IO、减少磁盘存储空间。
压缩的缺点:增加CPU开销。
2)压缩原则
(1)运算密集型的Job,少用压缩
(2)IO密集型的Job,多用压缩
MapReduce支持的压缩编码
压缩算法对比介绍
压缩格式 | 是否Hadoop自带 | 算法 | 文件扩展名 | 是否可切片 | 换成压缩格式后,原来的程序是否需要修改 |
---|---|---|---|---|---|
DEFLATE | 是,直接使用 | DEFLATE | .deflate | 否 | 和文本处理一样,不需要修改 |
Gzip | 是,直接使用 | DEFLATE | .gz | 否 | 和文本处理一样,不需要修改 |
bzip2 | 是,直接使用 | bzip2 | .bz2 | 是 | 和文本处理一样,不需要修改 |
LZO | 否,需要安装 | LZO | .lzo | 是 | 需要建索引,还需要指定输入格式 |
Snappy | 是,直接使用 | Snappy | .snappy | 否 | 和文本处理一样,不需要修改 |
压缩性能的比较
压缩算法 | 原始文件大小 | 压缩文件大小 | 压缩速度 | 解压速度 |
---|---|---|---|---|
gzip | 8.3GB | 1.8GB | 17.5MB/s | 58MB/s |
bzip2 | 8.3GB | 1.1GB | 2.4MB/s | 9.5MB/s |
LZO | 8.3GB | 2.9GB | 49.3MB/s | 74.6MB/s |
压缩方式选择
压缩方式选择时重点考虑: 压缩/解压缩速度、压缩率(压缩后存储大小)、压缩后是否可以支持切片。
- Gzip压缩
优点:压缩率比较高;
缺点:不支持Split;压缩/解压速度一般; - Bzip2压缩
优点:压缩率高;支持Split;
缺点:压缩/解压速度慢。 - Lzo压缩
优点:压缩/解压速度比较快;支持Split;
缺点:压缩率一般;想支持切片需要额外创建索引。 - Snappy压缩
优点:压缩和解压缩速度快;
缺点:不支持Split;压缩率一般;
压缩参数配置
- 为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器
压缩格式 | 对应的编码/解码器 |
---|---|
DEFLATE | org.apache.hadoop.io.compress.DefaultCodec |
gzip | org.apache.hadoop.io.compress.GzipCodec |
bzip2 | org.apache.hadoop.io.compress.BZip2Codec |
LZO | com.hadoop.compression.lzo.LzopCodec |
Snappy | org.apache.hadoop.io.compress.SnappyCodec |
- 要在Hadoop中启用压缩,可以配置如下参数
参数 | 默认值 | 阶段 | 建议 |
---|---|---|---|
io.compression.codecs (在core-site.xml中配置) | 无,这个需要在命令行输入hadoop checknative查看 | 输入压缩 | Hadoop使用文件扩展名判断是否支持某种编解码器 |
mapreduce.map.output.compress(在mapred-site.xml中配置) | false | mapper输出 | 这个参数设为true启用压缩 |
mapreduce.map.output.compress.codec(在mapred-site.xml中配置) | org.apache.hadoop.io.compress.DefaultCodec | mapper输出 | 企业多使用LZO或Snappy编解码器在此阶段压缩数据 |
mapreduce.output.fileoutputformat.compress(在mapred-site.xml中配置) | false | reducer输出 | 这个参数设为true启用压缩 |
mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml中配置) | org.apache.hadoop.io.compress.DefaultCodec | reducer输出 | 使用标准工具或者编解码器,如gzip和bzip2 |