协同过滤算法(collaborative filtering ):同时求θ与x的值
我们有了x的值,来估计θ的值;
我们有了θ的值,来估计x的值;
现在我们不想通过迭代的算法来求θ与x的值,我们想同时求x的值,将两个结合起来得到的代价函数如上图所示,在这个代价函数中,如果将x看作常数,则得到第一个代价函数;如果将θ看作常数,则得到第二个代价函数。
这里面x与θ都是n维的,而不是n+1维的,因为我们的x0=1,为截距项,不用通过计算就可以得到。
协同过滤算法
首先初始化x与θ的值,然后使用梯度下降法求x与θ的值,最后根据求出的x与θ的值来预测某个用户对某部电影的评分。这里的x与θ都是n维的,不是n+1维的。
总结
协同过滤算法可以学习几乎所有电影的特征(x),和所有用户的参数(θ),然后可以对不同用户对他们尚未打分的电影进行预测(某个用户的θ与某部电影的x的内积)。