Backpropagation algorithm(反向传播算法)
Θij(l) is a real number.
Forward propagation
上图是给出一个training example(x,y),是怎么进行forward propagation的.
Backpropagation algorithm(一个trainning example)
因为我们是先求的δ(4),再求δ(3),再一层层往input layer那边推,所以叫做Backpropagation algorithm。
δj(l)是对的第l层的node(activation) j的修正,因为第一层是我们观察到的features 的值,是正确的值,不需要修正,所以不存在δ(1)
g'(z(3))是表示对z(3)求sigmoid函数后再求导,在数学上它=a(3) .* (1-a(3))
是对没有regularization的偏导结果,即忽略λ(λ=0).
通过上面的这个式子,我们可以通过backpropagation计算这些δ的式子,这样得到我们需要的偏导
Backpropagation algorithm(m个trainning example)
我们有m个trainning examples.
Δ 是δ(delta)的大写,Δ ,δ是用来求偏导的。在后面我们要对Δ进行累加。
Δij(l)可以看成是Δ(l)的第i行第j列的元素,所以可以对计算向量化,如上图所示。