李燕

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::

Regularization:Regularized logistic regression

without regularization

 

    • 当features很多时会出现overfitting现象,图上的cost function是没有使用regularization时的costfunction的计算公式

 

with regularization

 

    • 当使用了regularization后,使θ1到n不那么大(因为要使J(θ)最小,θ1222.....θn2->0这时θj要趋向于0),这样可以避免overfitting出现,如上图中的粉色线的decision boundary.
    • 注意不用对θ0使用regularization

Gradient descent

  • without regularization

           

  • with regularization

           

    • 与linear regression在形式上相似,但是它们的hθ(x)不一样

Advanced optimization method

    • 在matlab和octave中,index都是从1开始的
    • [theta, cost] = ...
      fminunc(@(t)(costFunction(t, X, y)), initial_theta, options); %调用matlab的自带的函数fminunc, @(t)(costFunction(t, X, y))创建一个function,参数为t,调用前面写的 costFunction函数, 返回求得最优解后的theta和cost

posted on 2015-09-30 16:08  李燕  阅读(320)  评论(0编辑  收藏  举报