Regularization:Regularized logistic regression
without regularization
-
- 当features很多时会出现overfitting现象,图上的cost function是没有使用regularization时的costfunction的计算公式
with regularization
-
- 当使用了regularization后,使θ1到n不那么大(因为要使J(θ)最小,θ12+θ22.....θn2->0这时θj要趋向于0),这样可以避免overfitting出现,如上图中的粉色线的decision boundary.
- 注意不用对θ0使用regularization
Gradient descent
- without regularization
- with regularization
-
- 与linear regression在形式上相似,但是它们的hθ(x)不一样
Advanced optimization method
-
- 在matlab和octave中,index都是从1开始的
-
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options); %调用matlab的自带的函数fminunc, @(t)(costFunction(t, X, y))创建一个function,参数为t,调用前面写的 costFunction函数, 返回求得最优解后的theta和cost