李燕

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::
  110 随笔 :: 0 文章 :: 3 评论 :: 11万 阅读
< 2025年2月 >
26 27 28 29 30 31 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 1
2 3 4 5 6 7 8
  • Normal equation: 一种用来linear regression问题的求解Θ的方法,另一种可以是gradient descent
  • 仅适用于linear regression问题的求解,对其它的问题如classification problem或者feature number太大的情况下(计算量会很大)则不能使用normal equation,而应使用gradient descent来求解。

        (由求导的过程推导而得)

         这种方法是对cost function(J(θ),θ为n+1维向量(θ0,θ1.....θn))对各个θ求偏导,令偏导为0,这样求出对应的θ(高等数学里面求极值的方法),这         样求出的θ,使cost function的值最小

        例如:  

如何求解θ    

  • 这种求解θ的方法可不进行feature scaling,而对于用gradient descent求解θ而言,feature scaling很重要,它可使收敛速度加快。
  • normal equation与gradient descent两种方法优点与缺点比较

       

  • 当n>10000时,即feature number>10000时,用normal equation消耗太大,这时倾向于使用gradient desccent或者其它算法
  • 当n<1000时,使用normal equation更方便
posted on   李燕  阅读(330)  评论(0编辑  收藏  举报
编辑推荐:
· C++代码改造为UTF-8编码问题的总结
· DeepSeek 解答了困扰我五年的技术问题
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· 用 C# 插值字符串处理器写一个 sscanf
· Java 中堆内存和栈内存上的数据分布和特点
阅读排行:
· 为DeepSeek添加本地知识库
· 精选4款基于.NET开源、功能强大的通讯调试工具
· DeepSeek智能编程
· 大模型工具KTransformer的安装
· [计算机/硬件/GPU] 显卡
点击右上角即可分享
微信分享提示