李燕

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::
  • degugging:make sure gradient descent is working correctly
  1. cost function(J(θ)) of Number of iteration :cost function随着迭代次数增加的变化函数
  2. 运行错误的图象是什么样子的:cost function(J(θ)) of Number of iteration随着迭代次数增加而上升(如以下两种图像的情况),应使用较小的learning rate
  3.  运行正确的图象是什么样子的:cost function(J(θ)) of Number of iteration应该是递减的并且随着迭代次数增加它趋于一条平缓的曲线(即收敛于一个固定的值)

       

  • how to choose learning rate(∂)
    1. 若learning rate太小: 收敛速度会很慢
    2. 若learning rate太大: gradient descent不会收敛,会出现随着迭代次数的增加,cost function反而变大的情况,这时我们要选择较小的learning rate去尝试。
    3. 可供选择的一些learning rate值:  0.3, 0.1, 0.03, 0.01 and so on(3倍)
    4. 在进行gradient drscent时,我们会尝试一些不同的learning rate,然后绘制出不同的ost function(J(θ)) of Number of iteration曲线,然后选择一个使cost function 快速下降的learning rate.
    5. 如何选择最佳的learning rate  

                  尝试这些不同的learning rate找到一个最大的learning rate(若再大则不会收敛)或者比最大稍小一点的learning rate

posted on 2015-05-24 15:49  李燕  阅读(1005)  评论(0编辑  收藏  举报