数据结构笔记_简单版
ref:漫画算法+ github/huihui
第1章、算法概述
1.1 算法复杂度
时间复杂度按照从低到高的顺序,包括O(1)、O(logn)、O(n)、O(nlogn)、O(n2)等。
空间复杂度按照从低到高的顺序,包括O(1)、O(n)、O(n2)等。其中递归算法的空间复杂度和递归深度成正比。
第2章、数据结构基础
2.1 数组
随机访问;插入、删除元素都会导致大量元素被迫移动,影响效率。
2.2 链表
链表(linked list)是一种在物理上非连续、非顺序的数据结构,由若干节点(node)所组成。
查找节点,只能从头节点开始向逐节点查找。
更新节点
插入节点
尾插
头插
中间
删除元素
2.3 栈和队列
2.3.1 栈
2.3.2 队列
2.3.3 循环队列
(队尾下标+1)%数组长度 = 队头下标时,代表此队列满。队尾指针指向的位置永远空出1位,所以队列最大容量比数组长度小1。
//入队
if((rear+1)%length == front){
//" 队列已满!";
}
array[rear] = element;
rear = (rear+1) % length;
//出队
if(rear == front){
//" 队列已空!";
}
front = (front+1) % length;
2.4 散列表
也叫作哈希表(hash table),这种数据结构提供了键(Key)和值(Value)的映射关系。只要给出一个Key,就可以高效查找到它所匹配的Value,时间复杂度接近于O(1)。
解决哈希冲突的方法主要有两种,一种是开放寻址法,一种是链表法。
- 开放寻址法的原理很简单,当一个Key通过哈希函数获得对应的数组下标已被占用时,我们可以“另谋高就”,寻找下一个空档位置。
- 当新来的Entry映射到与之冲突的数组位置时,只需要插入到对应的链表中即可。
扩容
1.扩容,创建一个新的Entry空数组,长度是原数组的2倍。
2.重新Hash。
HashMap.Size >= Capacity×LoadFactor
第3章、树
3.1二叉树
- 满二叉树(下图左):除叶子节点外的所有分支节点都含有2个非空子节点的二叉树
- 完全二叉树(下图右):除了最后一层,其余层都是“满”的,这样的二叉树是完全二叉树
- 二叉排序树:根节点的值大于其左子树中任意一个节点的值,小于其右节点中任意一节点的值。
3.2 二叉树定理
1)任意二叉树,度数为2的节点个数等于叶节点数减1。
当只有1个节点时,度为0。每派生出1度,就会多出1个节点。派生出的度和派生出的节点数一定相等。
节点总数 = 总度数 + 1
设度数为2的节点数为X2
,度数为1的节点数为X1
,度数为0的节点数为X0
。可以得出如下关系式:
X2 + X1 + X0 = 2X2 + X1 + 1
,推出X2 = X0 - 1
2)满二叉树定理:非空满二叉树的叶节点数等于其分支节点数加1。
对于只有1个节点的树,该定理成立。从这开始思考,每产生1个分支节点(度数为2)。叶子节点数也会加1。
3)一颗非空二叉树空子树的数目等于其节点数目加1。
考虑只有1个根节点的二叉树:它有2个空子树,1个节点,因此结论成立。从这里开始考虑,每产生1个节点。空子树便会先减1然后加2。
- 父节点的下标是
parent
,那么它的左孩子节点下标就是2×parent + 1
;右孩子节点下标就是2×parent + 2
。 - 左孩子节点的下标是
leftChild
,那么它的父节点下标就是(leftChild-1)/ 2
- 显然,对于一个稀疏的二叉树来说,用数组表示法是非常浪费空间的。
3.3 二叉树遍历
-
前序遍历:根->左->右
-
中序遍历:左->根->右
-
后序遍历:左->右->根
-
层次遍历:按层次从左到右依次遍历每层中的结点。
-
// 3 // / \ // 9 20 // / \ / \ // N N 15 7 //前序遍历序列{3,9,20,15,7} //中序遍历序列{9,3,15,20,7} //后续遍历序列{9,15,7,20,3}
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
递归版
void InOrder(TreeNode *node); //中序遍历
void PostOrder(TreeNode *node);//后序遍历
void PreOrder(TreeNode *pRoot) //前遍历
{
if (pRoot == nullptr)
return;
std::cout << pRoot->val << " ";
PreorderTraverse(pRoot->left);
PreorderTraverse(pRoot->right);
}
迭代版
//前序遍历
void preorderTraversalIteration(TreeNode *root)
{
stack<TreeNode*> st;
if(root)
st.push(root);
while(!st.empty()){
TreeNode *nd = st.top();
st.pop();
cout << nd->val << " ";//操作当前节点
if(nd->right)
st.push(nd->right); //栈
if(nd->left)
st.push(nd->left);
}
}
//中序遍历:
void inorderTraversalIteration(TreeNode *root)
{
stack<TreeNode*> st;
TreeNode *curr = root;
while(curr || !st.empty()){
if(curr){
st.push(curr);
curr = curr->left;
}
else{
curr = st.top();
st.pop();
cout << curr->val << " ";//操作当前节点
curr = curr->right;
}
}
}
//后序遍历
void postorderTraversalIteration(TreeNode *root)
{
stack<TreeNode*> st;
TreeNode *pre;
if(root)
st.push(root);
while(!st.empty()){
TreeNode *nd = st.top();
/*
* 出栈条件:
* 对于叶子节点:直接弹出
* 对于非叶子节点:如果已经遍历过其左子节点或右子节点,则弹出
*/
if((!nd->left && !nd->right) || (pre && (nd->left == pre || nd->right == pre))){
st.pop();
cout << nd->val <<" ";//操作当前节点
pre = nd;
}
else{//说明是一个非叶子节点,并且还未访问其左右孩子
if(nd->right)
st.push(nd->right);//栈
if(nd->left)
st.push(nd->left);
}
}
}
更简单的非递归
//更简单的非递归前序遍历 根,左,右 用栈(反序)
void preOrder(TreeNode *root, std::vector<int> &path)
{
std::stack<std::pair<TreeNode *, bool> > tmpStack;
bool isVisited = false;
tmpStack.push(make_pair(root, isVisited));
while(!tmpStack.empty())
{
root = tmpStack.top().first;
isVisited = tmpStack.top().second;
tmpStack.pop();
if(root == nullptr)
continue;
if(isVisited)
{
path.push_back(root->val);
}
else//用栈(反序)
{
// //前序
// tmpStack.push(make_pair(root->right, false)); //右
// tmpStack.push(make_pair(root->left, false)); //左
// tmpStack.push(make_pair(root, true)); //根
// //中序
// tmpStack.push(make_pair(root->right, false)); //右
// tmpStack.push(make_pair(root, true)); //根
// tmpStack.push(make_pair(root->left, false)); //左
//后序
tmpStack.push(make_pair(root, true)); //根
tmpStack.push(make_pair(root->right, false)); //右
tmpStack.push(make_pair(root->left, false)); //左
}
}
}
void LevelOrder(TreeNode *T){
std::queue<TreeNode*> tmpQueue;
if (T == nullptr){
return;
}
tmpQueue.push(T);
TreeNode *tmpNode = new TreeNode(-1);
while (!tmpQueue.empty()){
tmpNode = tmpQueue.front();
cout << tmpNode->val<<" ";//输出
tmpQueue.pop();
if (tmpNode->left){
tmpQueue.push(tmpNode->left);
}
if (tmpNode->right){
tmpQueue.push(tmpNode->right);
}
}
}
3.4 二叉堆
堆是一棵完全二叉树,使用数组实现堆,堆分为两种:
- 最大堆:父节点大于任意子节点(因此堆顶为最大值)
- 最小堆:父节点小于任意子节点(因此堆顶为最小值)
对于第i个节点(i从0开始计数):
- 父节点:
(i-1)/2
- 左子节点:
2i+1
- 右子节点:
2i+2
若包含sz
个节点,则第一个非叶子节点的序号为(sz - 2) / 2
插入节点
- 将元素添加到数组末尾;(相当于叶节点接入堆中)
- 和父节点进行比较,如果大于父节点(以最大堆为例),则与父节点交换,一直比较交换到根节点
/********************************************
* 向堆中插入元素
* hole:新元素所在的位置
********************************************/
template <class value>
void _push_heap(vector<value> &arr,int hole){
value v = arr[hole]; //取出新元素,从而产生一个空洞
int parent = (hole - 1) / 2;
//建最大堆,如果建最小堆换成 arr[parent] > value
while(hole > 0 && arr[parent] < v){
arr[hole] = arr[parent];
hole = parent;
parent = (hole - 1) / 2;
}
arr[hole] = v;
}
删除节点
删除实际上是将堆顶元素移入数组末尾,并不是真的删除。删除节点时,进行下列操作:
- 保存数组末尾元素(存如临时变量
v
),将堆顶元素存入数组末尾 - 将原来堆顶元素的两个子节点中较大的一个移入堆顶(以最大堆为例),填补空缺,此时产生新的空缺,继续此步骤,直到空缺为一个叶子节点
- 将
v
中存储的值移到空缺叶子节点的位置 - 对上一步中的新叶子节点完成向上比较交换操作
/********************************************
* 删除堆顶元素
********************************************/
template <class value>
void _pop_heap(vector<value> &arr,int sz)
{
value v = arr[sz - 1];
arr[sz - 1] = arr[0];
--sz;
int hole = 0;
int child = 2 * (hole + 1); //右孩子
while(child < sz){
if(arr[child] < arr[child - 1])
--child;
arr[hole] = arr[child];
hole = child;
child = 2 * (hole + 1);
}
if(child == sz){
arr[hole] = arr[child - 1];
hole = child - 1;
}
arr[hole] = v;
_push_heap(arr,hole);
}
建堆
- 堆的大小固定(且所有元素已知):按“序号从大到小”的顺序遍历所有非叶子节点,将这些节点与左右子节点较大者(以最大堆为例)交换,执行siftdown一直到叶子节点,因此,每遍历到一个节点时,其左子树和右子树都已经是最大堆,只需对当前节点执行siftdown操作
- 堆的大小未知(如数据流):可以通过插入操作来构建堆
/********************************************
* 建堆
* sz:删除堆顶元素后的大小
* v: 被堆顶元素占据的位置原来的元素的值
********************************************/
template <class value>
void _make_heap(vector<value> &arr)
{
int sz = arr.size();
int parent = (sz - 2) / 2;
while(parent >= 0){
int hole = parent;
int child = 2 * (hole + 1); //右孩子
value v = arr[hole];
while(child < sz){
if(arr[child] < arr[child - 1])
--child;
arr[hole] = arr[child];
hole = child;
child = 2 * (hole + 1);
}
if(child == sz){
arr[hole] = arr[child - 1];
hole = child - 1;
}
arr[hole] = v;
_push_heap(arr,hole);
--parent;
}
}
复杂度
- 插入节点:时间复杂度为O(logn)
- 删除堆顶:时间复杂度为O(logn)
- 建堆:
- 堆的大小固定(且所有元素已知):每个siftdown操作的最大代价是节点被向下移动到树底的层数。在任意一棵完全二叉树中,大约有一半的节点是叶节点,因此不需要向下移动。四分之一的节点在叶节点的上一层,这样的节点最多只需要移动一层。每向上一层,节点的数目就为前一层的一般,而子树高度加1,因此移动层数加一。时间复杂度为O(n)
- 堆的大小未知(如数据流):由于插入节点的时间代价为O(logn),对于n个元素,每个执行一次插入操作,所以时间复杂度为O(nlogn)
void UpAdjust(){
int childIndex = array.size() - 1;
int parentIndex = (childIndex - 1) / 2;
const int temp = array.back();
while (childIndex > 0 && temp > array[parentIndex]){
array[childIndex] = array[parentIndex];
childIndex = parentIndex;
parentIndex = (childIndex - 1) / 2;
}
array[childIndex] = temp;
}
void DownAdjust(){
int parentIndex = 0;
int childIndex = 2 * parentIndex + 1;
const int temp = array.front();
while (childIndex < array.size()){
// 找到左右孩子中的最大值
if (childIndex + 1 < array.size() && array[childIndex + 1] > array[childIndex]){
++childIndex;
}
if (temp >= array[childIndex]){
break;
}
else{
array[parentIndex] = array[childIndex];
parentIndex = childIndex;
childIndex = 2 * parentIndex + 1;
}
}
array[parentIndex] = temp;
}
#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>
int main()
{
std::cout << "Max heap:\n";
std::vector<int> v { 3, 2, 4, 1, 5, 9 };
std::cout << "initially, v: ";
for (auto i : v) std::cout << i << ' ';
std::cout << '\n';
std::make_heap(v.begin(), v.end(), std::less<int>{});
std::cout << "make_heap, v: ";
for (auto i : v) std::cout << i << ' ';
std::cout << '\n';
v.push_back(6);
std::push_heap(v.begin(), v.end());
std::cout << "push_heap, v: ";
for (auto i : v) std::cout << i << ' ';
std::cout << '\n';
std::pop_heap(v.begin(), v.end());
v.pop_back();
std::cout << "pop_heap, v: ";
for (auto i : v) std::cout << i << ' ';
std::cout << '\n';
}
第4章、排序
- 内排序
- 1.插入排序(稳定)
- 2.冒泡排序(稳定)
- 3.选择排序(不稳定)
- 4.shell排序(不稳定)
- 5.快速排序(不稳定)
- 6.归并排序(稳定)
- 7.堆排序(不稳定)
- 外排序
稳定性:相同的元素在排序前和排序后的前后位置是否发生改变,没有改变则排序是稳定的,改变则排序是不稳定的 ——八大排序算法的稳定性
1.插入排序
逐个处理待排序的记录,每个记录与前面已排序已排序的子序列进行比较,将它插入子序列中正确位置
代码
template<class T>
void inssort(T A[],int len)
{
cout <<__func__ << endl;
for(int left = 1; left < len; left++){
T tp = A[left];//待插入元素
int right = left;
for(; right >= 1 && tp < A[right-1]; right--)//有序
A[right] = A[right - 1];//赋值,非交换
A[right] = tp;
}
}
性能
- 最佳:升序。时间复杂度为O(n)
- 最差:降序。时间复杂度为O(n^2)
- 平均:对于每个元素,前面有一半元素比它大。时间复杂度为O(n^2)
如果待排序数据已经“基本有序”,使用插入排序可以获得接近O(n)的性能
2.冒泡排序
从数组的底部比较到顶部,比较相邻元素。如果下面的元素更小则交换,否则,上面的元素继续往上比较。这个过程每次使最小元素像个“气泡”似地被推到数组的顶部
优化
- 从后往前循环,若前者大于后者,则交换数据,这样能够使其他的数往前排。
- 设置标志数,如果所有元素已经是有序的了,可以避免执行不必要的循环。
代码
template<class T>
void bubsort(T A[],int len)
{
bool isSored = true;
for(int left = 0; left < len - 1 && isSored; left++){//前-》后 isSored优化
isSored = false;
for(int right = len - 1; right > left; right--){//后-》前
if(A[right] < A[right-1]){
swap(A[right],A[right-1]);
isSored = true;
}
}
}
}
性能
冒泡排序是一种相对较慢的排序,没有较好的最佳情况执行时间。通常情况下时间复杂度都是O(n^2)
3.选择排序
第i次“选择”数组中第i小的记录,并将该记录放到数组的第i个位置。换句话说,每次从未排序的序列中找到最小元素,放到未排序数组的最前面
代码
template<class T>
void selsort(T A[],int len)
{
cout <<__func__ << endl;
for(int left = 0;left < len - 1;left++){
int right = len - left -1;
int lowindex = left;
int maxindex = right;
for(int right = len - left -1;right > left;right--){
if(A[right] > A[maxindex])//maxindex
maxindex = right;
if(A[right] < A[lowindex])//lowindex
lowindex = right;
}
swap(A[left],A[lowindex]);
swap(A[right],A[maxindex]);
}
}
性能
不管数组是否有序,在从未排序的序列中查找最小元素时,都需要遍历完最小序列,所以时间复杂度为O(n^2)
优化
每次内层除了找出一个最小值,同时找出一个最大值(初始为数组结尾)。
4.shell排序
shell排序在不相邻的元素之间比较和交换。利用了插入排序的最佳时间代价特性,它试图将待排序序列变成基本有序的,然后再用插入排序来完成排序工作
在执行每一次循环时,Shell排序把序列分为互不相连的子序列,并使各个子序列中的元素在整个数组中的间距相同,每个子序列用插入排序进行排序。每次循环增量是前一次循环的1/2,子序列元素是前一次循环的2倍
最后一轮将是一次“正常的”插入排序(即对包含所有元素的序列进行插入排序)
代码
const int INCRGAP = 3;
template<class Elem>
void shellsort(Elem A[],int n)
{
for(int incr = n / INCRGAP;incr > 0;incr /= INCRGAP){//遍历所有增量大小
for(int i = 0;i < incr;i++){
/*对子序列进行插入排序,当增量为1时,对所有元素进行最后一次插入排序*/
for(int j = i + incr;j < n;j += incr){
for(int k = j; k > i && A[k] < A[k - incr];k -= incr){
swap(A,k,k - incr);
}
}
}
}
}
性能
选择适当的增量序列可使Shell排序比其他排序法更有效,一般来说,增量每次除以2时并没有多大效果,而“增量每次除以3”时效果更好
当选择“增量每次除以3”递减时,Shell排序的平均运行时间是O(n^(1.5))
5.快速排序
首先选择一个轴值,小于轴值的元素被放在数组中轴值左侧,大于轴值的元素被放在数组中轴值右侧,这称为数组的一个分割(partition)。快速排序再对轴值左右子数组分别进行类似的操作
选择轴值有多种方法。最简单的方法是使用首或尾元素。但是,如果输入的数组是正序或者逆序时,会将所有元素分到轴值的一边。较好的方法是随机选取轴值
代码
template <class Elem>
int partition(Elem A[],int i,int j)
{
//这里选择尾元素作为轴值,轴值的选择可以设计为一个函数
//如果选择的轴值不是尾元素,还需将轴值与尾元素交换
int pivot = A[j];
int l = i - 1;
for(int r = i;r < j;r++)
if(A[r] <= pivot)
swap(A,++l,r);
swap(A,++l,j);//将轴值从末尾与++l位置的元素交换
return l;
}
template <class Elem>
void qsort(Elem A[],int i,int j)
{
if(j <= i) return;
int p = partition<Elem>(A,i,j);
qsort<Elem>(A,i,p - 1);
qsort<Elem>(A,p + 1,j);
}
性能
- 最佳情况:O(nlogn)
- 平均情况:O(nlogn)
- 最差情况:每次处理将所有元素划分到轴值一侧,O(n^2)
快速排序平均情况下运行时间与其最佳情况下的运行时间很接近,而不是接近其最坏情况下的运行时间。快速排序是所有内部排序算法中平均性能最优的排序算法
优化
-
最明显的改进之处是轴值的选取,如果轴值选取合适,每次处理可以将元素较均匀的划分到轴值两侧:
三者取中法:三个随机值的中间一个。为了减少随机数生成器产生的延迟,可以选取首中尾三个元素作为随机值
-
当n很小时,快速排序会很慢。因此当子数组小于某个长度(经验值:9)时,什么也不要做。此时数组已经基本有序,最后调用一次插入排序完成最后处理
6.归并排序
将一个序列分成两个长度相等的子序列,为每一个子序列排序,然后再将它们合并成一个序列。合并两个子序列的过程称为归并
代码
template<class Elem>
void mergesortcore(Elem A[],Elem temp[],int i,int j)
{
if(i == j) return;
int mid = (i + j)/2;
mergesortcore(A,temp,i,mid);
mergesortcore(A,temp,mid + 1,j);
/*归并*/
int i1 = i,i2 = mid + 1,curr = i;
while(i1 <= mid && i2 <= j){
if(A[i1] < A[i2])
temp[curr++] = A[i1++];
else
temp[curr++] = A[i2++];
}
while(i1 <= mid)
temp[curr++] = A[i1++];
while(i2 <= j)
temp[curr++] = A[i2++];
for(curr = i;curr <= j;curr++)
A[curr] = temp[curr];
}
template<class Elem>
void mergesort(Elem A[],int sz)
{
Elem *temp = new Elem[sz]();
int i = 0,j = sz - 1;
mergesortcore(A,temp,i,j);
delete [] temp;
}
性能
logn层递归中,每一层都需要O(n)的时间代价,因此总的时间复杂度是O(nlogn),该时间复杂度不依赖于待排序数组中数值的相对顺序。因此,是最佳,平均和最差情况下的运行时间
由于需要一个和带排序数组大小相同的辅助数组,所以空间代价为O(n)
优化
原地归并排序不需要辅助数组即可归并
void reverse(int *arr,int n)
{
int i = 0,j = n - 1;
while(i < j)
swap(arr[i++],arr[j--]);
}
void exchange(int *arr,int sz,int left)
{
reverse(arr,left);//翻转左边部分
reverse(arr + left,sz - left);//翻转右边部分
reverse(arr,sz);//翻转所有
}
void merge(int *arr,int begin,int mid,int end)
{
int i = begin,j = mid,k = end;
while(i < j && j <= k){
int right = 0;
while(i < j && arr[i] <= arr[j])
++i;
while(j <= k && arr[j] <= arr[i]){
++j;
++right;
}
exchange(arr + i,j - i,j - i - right);
i += right;
}
}
7.堆排序
堆排序首先根据数组构建最大堆,然后每次“删除”堆顶元素(将堆顶元素移至末尾)。最后得到的序列就是从小到大排序的序列
代码
这里直接使用C++ STL中堆的构建与删除函数
template <class Elem>
void heapsort(Elem A[],int n)
{
Elem mval;
int end = n;
make_heap(A,A + end);
for(int i = 0;i < n;i++){
pop_heap(A,A + end);
end--;
}
}
如果不能使用现成的库函数:
/********************************************
* 向堆中插入元素
* hole:新元素所在的位置
********************************************/
template <class value>
void _push_heap(vector<value> &arr,int hole){
value v = arr[hole];//取出新元素,从而产生一个空洞
int parent = (hole - 1) / 2;
//建最大堆,如果建最小堆换成 arr[parent] > value
while(hole > 0 && arr[parent] < v){
arr[hole] = arr[parent];
hole = parent;
parent = (hole - 1) / 2;
}
arr[hole] = v;
}
/********************************************
* 删除堆顶元素
********************************************/
template <class value>
void _pop_heap(vector<value> &arr,int sz)
{
value v = arr[sz - 1];
arr[sz - 1] = arr[0];
--sz;
int hole = 0;
int child = 2 * (hole + 1); //右孩子
while(child < sz){
if(arr[child] < arr[child - 1])
--child;
arr[hole] = arr[child];
hole = child;
child = 2 * (hole + 1);
}
if(child == sz){
arr[hole] = arr[child - 1];
hole = child - 1;
}
arr[hole] = v;
_push_heap(arr,hole);
}
/********************************************
* 建堆
* sz:删除堆顶元素后的大小
* v: 被堆顶元素占据的位置原来的元素的值
********************************************/
template <class value>
void _make_heap(vector<value> &arr)
{
int sz = arr.size();
int parent = (sz - 2) / 2;
while(parent >= 0){
int hole = parent;
int child = 2 * (hole + 1); //右孩子
value v = arr[hole];
while(child < sz){
if(arr[child] < arr[child - 1])
--child;
arr[hole] = arr[child];
hole = child;
child = 2 * (hole + 1);
}
if(child == sz){
arr[hole] = arr[child - 1];
hole = child - 1;
}
arr[hole] = v;
_push_heap(arr,hole);
--parent;
}
}
template <class value>
void heap_sort(vector<value> &arr)
{
_make_heap(arr);
for(int sz = arr.size();sz > 1;sz--)
_pop_heap(arr,sz);
}
性能
根据已有数组构建堆需要O(n)的时间复杂度,每次删除堆顶元素需要O(logn)的时间复杂度,所以总的时间开销为,O(n+nlogn),平均时间复杂度为O(nlogn)
注意根据已有元素建堆是很快的,如果希望找到数组中第k大的元素,可以用O(n+klogn)的时间,如果k很小,时间开销接近O(n)