Hadoop_24_MapReduce实现QQ共同好友
1.社交粉丝数据分析:
以下是qq的好友列表数据,冒号前是一个用户,冒号后是该用户的所有好友(数据中的好友关系是单向的)
A:B,C,D,F,E,O
B:A,C,E,K
C:F,A,D,I
D:A,E,F,L
E:B,C,D,M,L
F:A,B,C,D,E,O,M
G:A,C,D,E,F
H:A,C,D,E,O
I:A,O
J:B,O
K:A,C,D
L:D,E,F
M:E,F,G
O:A,H,I,J
求出哪些人两两之间有共同好友,及他俩的共同好友都有谁?
解题思路:如果想要得到两两之间的共同好友,若A和B的共同好友是C,通过反向思考,可以求出C是哪些人的共同好友,然后将这些共同好友
两两组合;
c --> a b e f g h k (第一步:找出c的所有共同好友) a-b c a-e c (第二步:作为key,即可得到a-e的共同好友c和d) d --> a c e f g h k a-c d a-e d
第一步代码实现:
package cn.bigdata.hdfs.fensi; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class SharedFriendsStepOne { static class SharedFriendsStepOneMapper extends Mapper<LongWritable, Text, Text, Text>{ @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //A:B,C,D,F,E,O(找出具有共同好友的都是哪些人的) String line = value.toString(); String[] person_friends = line.split(":"); String person = person_friends[0]; String feiends = person_friends[1]; for(String friend : feiends.split(",")){ // 输出<好友,人> context.write(new Text(friend), new Text(person)); } } } static class SharedFriendsStepOneReducer extends Reducer<Text, Text, Text, Text>{ @Override protected void reduce(Text friend, Iterable<Text> persons, Context context) throws IOException, InterruptedException { //persons:具有共同好友的所有人:c --> a b e f g h k StringBuffer sb = new StringBuffer(); for(Text person : persons){ sb.append(person).append(","); } context.write(friend, new Text(sb.toString())); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(SharedFriendsStepOne.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setMapperClass(SharedFriendsStepOneMapper.class); job.setReducerClass(SharedFriendsStepOneReducer.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } }
运行结果:
A I,K,C,B,G,F,H,O,D,
B A,F,J,E,
C A,E,B,H,F,G,K,
D G,C,K,A,L,F,E,H,
E G,M,L,H,A,F,B,D,
F L,M,D,C,G,A,
G M,
H O,
I O,C,
J O,
K B,
L D,E,
M E,F,
O A,H,I,J,F,
第二步代码实现:具有共同好友的人两两作为key输出
package cn.bigdata.hdfs.fensi; import java.io.IOException; import java.util.Arrays; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class SharedFriendsStepTwo { static class SharedFriendsStepTwoMapper extends Mapper<LongWritable, Text, Text, Text> { // 拿到的数据是上一个步骤的输出结果 // A I,K,C,B,G,F,H,O,D, // 友 人,人,人 @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String[] friend_persons = line.split("\t"); String friend = friend_persons[0]; String[] persons = friend_persons[1].split(","); //排序,使得B-C和C-B不重复 Arrays.sort(persons); for (int i = 0; i < persons.length - 1; i++) { for (int j = i + 1; j < persons.length; j++) { // 发出 <人-人,好友> ,这样,相同的“人-人”对的所有好友就会到同1个reduce中去 context.write(new Text(persons[i] + "-" + persons[j]), new Text(friend)); } } } } static class SharedFriendsStepTwoReducer extends Reducer<Text, Text, Text, Text> { @Override protected void reduce(Text person_person, Iterable<Text> friends, Context context) throws IOException, InterruptedException { StringBuffer sb = new StringBuffer(); for (Text friend : friends) { sb.append(friend).append(" "); } context.write(person_person, new Text(sb.toString())); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(SharedFriendsStepTwo.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setMapperClass(SharedFriendsStepTwoMapper.class); job.setReducerClass(SharedFriendsStepTwoReducer.class); FileInputFormat.setInputPaths(job, new Path("F:/fensiOutput/part-r-00000")); FileOutputFormat.setOutputPath(job, new Path("F:/fensiOutput4")); job.waitForCompletion(true); } }
运行结果:
A-B E C A-C D F A-D E F A-E D B C A-F O B C D E A-G F E C D A-H E C D O A-I O A-J O B A-K D C A-L F E D A-M E F B-C A B-D A E B-E C B-F E A C B-G C E A B-H A E C B-I A B-K C A B-L E B-M E B-O A C-D A F C-E D C-F D A C-G D F A C-H D A C-I A C-K A D C-L D F C-M F C-O I A D-E L D-F A E D-G E A F D-H A E D-I A D-K A D-L E F D-M F E D-O A E-F D M C B E-G C D E-H C D E-J B E-K C D E-L D F-G D C A E F-H A D O E C F-I O A F-J B O F-K D C A F-L E D F-M E F-O A G-H D C E A G-I A G-K D A C G-L D F E G-M E F G-O A H-I O A H-J O H-K A C D H-L D E H-M E H-O A I-J O I-K A I-O A K-L D K-O A L-M E F
你情我愿,我们就在一起!
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步