pytroch resnet构建过程理解
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | class ResNet(nn.Module): def __init__( self , block, layers, num_classes = 1000 ): self .inplanes = 64 super (ResNet, self ).__init__() self .conv1 = nn.Conv2d( 3 , 64 , kernel_size = 7 , stride = 2 , padding = 3 , bias = False ) self .bn1 = nn.BatchNorm2d( 64 ) self .relu = nn.ReLU(inplace = True ) self .maxpool = nn.MaxPool2d(kernel_size = 3 , stride = 2 , padding = 0 , ceil_mode = True ) # change 第一次pooling self .layer1 = self ._make_layer(block, 64 , layers[ 0 ]) self .layer2 = self ._make_layer(block, 128 , layers[ 1 ], stride = 2 ) self .layer3 = self ._make_layer(block, 256 , layers[ 2 ], stride = 2 ) self .layer4 = self ._make_layer(block, 512 , layers[ 3 ], stride = 2 ) # it is slightly better whereas slower to set stride = 1 # self.layer4 = self._make_layer(block, 512, layers[3], stride=1) self .avgpool = nn.AvgPool2d( 7 ) self .fc = nn.Linear( 512 * block.expansion, num_classes) for m in self .modules(): if isinstance (m, nn.Conv2d): n = m.kernel_size[ 0 ] * m.kernel_size[ 1 ] * m.out_channels m.weight.data.normal_( 0 , math.sqrt( 2. / n)) elif isinstance (m, nn.BatchNorm2d): m.weight.data.fill_( 1 ) m.bias.data.zero_() def _make_layer( self , block, planes, blocks, stride = 1 ): downsample = None if stride ! = 1 or self .inplanes ! = planes * block.expansion: downsample = nn.Sequential( nn.Conv2d( self .inplanes, planes * block.expansion, kernel_size = 1 , stride = stride, bias = False ), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block( self .inplanes, planes, stride, downsample)) self .inplanes = planes * block.expansion for i in range ( 1 , blocks): layers.append(block( self .inplanes, planes)) return nn.Sequential( * layers) def forward( self , x): x = self .conv1(x) x = self .bn1(x) x = self .relu(x) x = self .maxpool(x) x = self .layer1(x) x = self .layer2(x) x = self .layer3(x) x = self .layer4(x) x = self .avgpool(x) x = x.view(x.size( 0 ), - 1 ) x = self .fc(x) return x |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧