LOJ#6682. 梦中的数论(min_25筛)
第一次打\(min_25\)筛,所以写一写
做法
就是穿了件肥肥的衣服~,等价于这个:
\[\frac{1}{2}(\sum\limits_{i=1}^n \sigma^2(i)-\sum\limits_{i=1}^n \sigma(i))
\]
后面那个分块一下就好了(不会有人学傻了去筛吧。。。)
看前面这个\(\sigma^2(i)\),设\(F(i)=\sigma^2(i)\)
显然:\(F(i)\)是积性函数且\(F(p^k)=(k+1)^2,p\in prime\)
我们考虑min_25筛的公式
\(g(n,j)=\sum\limits_{i=1}^n[i\in prime || min_i(P)>P_j]F(i)\):$$\begin{aligned}\
g(n,j)=
\begin{cases}
g(n,j-1)&P_j^2>n\
g(n,j-1)-F(P_j)[g(\frac{n}{P_j},j-1)-\sum\limits_{i=1}{j-1}F(P_i)]&P_j2≤n\
\end{cases}
\end{aligned}$$
\(s(n,j)=\sum\limits_{i=1}^n[min_i(P)≥P_j]F_i\):$$s(n,j)=g(n,|P|)-\sum\limits_{i=1}{j-1}F(P_i)+\sum\limits_{k=j}{P_k2≤n}\sum\limits_{e=1}{P_k{e+1}≤n}s(\frac{n}{P_ke},k+1)F(P_ke)+F(P_k)$$
\(Ans=s(n,1)+F(1)\)
- \(s(x,y)\)可以写个递归
- 而在\(s(x,y)\)中,我们只会用到\(g(n,|p|)\),那么第二维相当于是废的,\(g\)的第二维是递推得出的
考虑放在一个循环里做,\(g\)的本质就是埃氏筛法,类似做即可 - \(F(p)=4,p\in prime\),则\(g(n,|p|)=4\times(\sum\limits_{i=1}^n[i\in prime])\)
设\(g'(n,|p|)=\sum\limits_{i=1}^n[i\in prime]\),则\(g(n,|p|)=4\times g'(n,|p|)\),直接做\(g'\)即可 - 显然\(g'\)的第一维的个数是\(O(\sqrt n)\)级别的,那数组映射下来即可
Code
为了增加可读性,没有卡常
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL maxn=1e6+9,mod=998244353;
#define pb push_back
#define opt operator
LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0'|| c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3ll)+(x<<1ll)+c-'0'; c=getchar();
}
return x*f;
}
LL n,m,T,ans1,ans2,tot;
LL w[maxn],pos1[maxn],pos2[maxn],f[maxn],pri[maxn],vis[maxn];
LL Pow(LL base,LL b){ LL ret(1); while(b){ if(b&1) ret=ret*base%mod; base=base*base%mod; b>>=1; } return ret; }
LL Id(LL x){ return x<maxn?pos1[x]:pos2[n/x]; }
void Fir(LL N){
for(LL i=2;i<=N;++i){
if(!vis[i]) pri[++tot]=i;
for(LL j=1;j<=tot && pri[j]*i<=N;++j){
vis[pri[j]*i]=1; if(i%pri[j]==0) break;
}
}
}
LL S(LL x,LL y){
if(x<=1 || pri[y]>x) return 0;
LL ret(0);
ret=(f[Id(x)]-(y-1))%mod*4%mod;
for(LL k=y;k<=tot && pri[k]*pri[k]<=x; ++k){
LL t1(pri[k]),t2(t1*t1);
for(LL e=1;t2<=x;++e,t1=t2,t2*=pri[k]){
ret=(ret+S(x/t1,k+1)*(e+1)%mod*(e+1)%mod+(e+2)*(e+2)%mod)%mod;
}
}
return ret;
}
int main(){
n=Read();
for(LL i=1,j;i<=n;i=j+1){
j=n/(n/i);
w[++w[0]]=n/i;
if(w[w[0]]<maxn) pos1[w[w[0]]]=w[0];
else pos2[j]=w[0];
f[w[0]]=(w[w[0]]-1+mod)%mod;
ans2=(ans2+(j-i+1)*w[w[0]]%mod)%mod;
}
Fir(sqrt(n));
for(LL i=1;i<=tot;++i){
for(LL j=1;j<=w[0] && pri[i]*pri[i]<=w[j];++j){
f[j]=(f[j]-(f[Id(w[j]/pri[i])]-(i-1))+mod)%mod;
}
}
ans1=(S(n,1)+1)%mod;
printf("%lld\n",(ans1-ans2+mod)%mod*Pow(2,mod-2)%mod);
return 0;
}