CF1174D Ehab and the Expected XOR Problem(二进制)
做法
求出答案序列的异或前缀和\(sum_i\),\([l,r]\)子段异或和可表示为\(sum_r\bigoplus sum_{l-1}\)
故转换问题为,填\(sum\)数组,数组内的元素不为\(0\)且互不相同,且两两异或不为\(x\)
预处理\(x\)为多对值,每对值异或起来为\(x\),显然是两两互不影响的,每对值选择任意一个填就行了
最后还得从\(sum_i=\bigoplus_{j=1}^i a_i\)转换为\(a_i\)
code
#include<bits/stdc++.h>
using namespace std;
typedef int LL;
const LL maxn=2e6+9;
inline LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3)+(x<<1)+c-'0'; c=getchar();
}return x*f;
}
LL n,x,tot,sum;
LL to[maxn],visit[maxn],ans[maxn];
vector<LL> e;
int main(){
n=Read(); x=Read();
LL up(1<<n);
e.push_back(0);
visit[x]=1;
for(LL i=1;i<up;++i){
if(visit[i]) continue;
visit[x^i]=1;
e.push_back(i);
}
printf("%d\n",e.size()-1);
for(LL i=1;i<e.size();++i) printf("%d ",e[i]^e[i-1]);
return 0;
}