CF1174D Ehab and the Expected XOR Problem(二进制)

做法

求出答案序列的异或前缀和\(sum_i\)\([l,r]\)子段异或和可表示为\(sum_r\bigoplus sum_{l-1}\)

故转换问题为,填\(sum\)数组,数组内的元素不为\(0\)且互不相同,且两两异或不为\(x\)

预处理\(x\)为多对值,每对值异或起来为\(x\),显然是两两互不影响的,每对值选择任意一个填就行了

最后还得从\(sum_i=\bigoplus_{j=1}^i a_i\)转换为\(a_i\)

code

#include<bits/stdc++.h>
using namespace std;
typedef int LL;
const LL maxn=2e6+9;
inline LL Read(){
    LL x(0),f(1); char c=getchar();
    while(c<'0' || c>'9'){
        if(c=='-') f=-1; c=getchar();
    }
    while(c>='0' && c<='9'){
        x=(x<<3)+(x<<1)+c-'0'; c=getchar();
    }return x*f;
}
LL n,x,tot,sum;
LL to[maxn],visit[maxn],ans[maxn];
vector<LL> e;
int main(){
	n=Read(); x=Read();
	LL up(1<<n);
	e.push_back(0);
	visit[x]=1;
	for(LL i=1;i<up;++i){
		if(visit[i]) continue;
	    visit[x^i]=1;
		e.push_back(i);
	}
	printf("%d\n",e.size()-1);
	for(LL i=1;i<e.size();++i) printf("%d ",e[i]^e[i-1]);
	return 0;
}
posted @ 2019-06-04 14:50  y2823774827y  阅读(172)  评论(0编辑  收藏  举报