P3825 [NOI2017]游戏
题目
做法
\(x\)地图外的地图好做,模型:\((x,y)\)必须同时选\(x \rightarrow y,y^\prime \rightarrow x^\prime\)
难点在处理\(x\)地图上,三进制枚举车,状压一下也能做,理论时间复杂度\(O(3^d 4m)\),卡不满优化一下也能过吧
往更深层考虑??不枚举选哪个了,枚举选地图,其实只用考虑\(A,B\)就行,\(C\)包含在里面了(反正也只要选一辆)
时间复杂度\(O(2^d 4m)\)
My complete code
#include<bits/stdc++.h>
#include<stack>
using namespace std;
typedef int LL;
const LL maxn=1e6;
struct node{
LL to,next;
}dis[maxn];
stack<LL> sta;
LL num,n,m,k,tim,tot,d;
LL head[maxn],Scc[maxn],low[maxn],dfn[maxn],pos[maxn],x[maxn],y[maxn],visit[maxn];
char s[maxn],p1[maxn],p2[maxn];
inline void Add(LL u,LL v){
dis[++num]=(node){v,head[u]},head[u]=num;
}
void Tarjan(LL u){
visit[u]=1; sta.push(u); low[u]=dfn[u]=++tim;
for(LL i=head[u];i;i=dis[i].next){
LL v(dis[i].to);
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(visit[v]) low[u]=min(low[u],low[v]);
}
if(low[u]==dfn[u]){
LL now;
++tot;
do{
now=sta.top(); sta.pop();
Scc[now]=tot;
visit[now]=0;
}while(now!=u);
}
}
inline bool Check(){
for(LL i=1;i<=2*n;++i)
if(!dfn[i]) Tarjan(i);
for(LL i=1;i<=n;++i)
if(Scc[i]==Scc[i+n]) return false;
for(LL i=1;i<=n;++i){
if(Scc[i]<Scc[i+n]){
if(s[i]=='A') printf("B");
else printf("A");
}else{
if(s[i]=='C') printf("B");
else printf("C");
}
}return true;
}
inline void First(){
for(LL i=1;i<=2*n;++i) visit[i]=0;
for(LL i=1;i<=2*n;++i) low[i]=0;
for(LL i=1;i<=2*n;++i) dfn[i]=0;
for(LL i=1;i<=2*n;++i) Scc[i]=0;
for(LL i=1;i<=2*n;++i) head[i]=0;
while(sta.size()) sta.pop();
num=tim=tot=0;
}
inline void Solve(){
LL up((1<<d)-1),x1,x2,y1,y2;
for(LL i=0;i<=up;++i){
First();
for(LL j=1;j<=d;++j)
if(((i>>(j-1))&1)==0) s[pos[j]]='A';
else s[pos[j]]='B';
for(LL j=1;j<=m;++j){
if(p1[j]==s[x[j]]) continue;
if(p2[j]==s[y[j]]){
if(p1[j]=='C' || (p1[j]=='B' && s[x[j]]=='C'))
Add(x[j]+n, x[j]);
else
Add(x[j], x[j]+n);
continue;
}
if(p1[j]=='A' || (p1[j]=='B'&&s[x[j]]=='A')) x1=x[j],x2=x[j]+n;
else x1=x[j]+n,x2=x[j];
if(p2[j]=='A' || (p2[j]=='B'&&s[y[j]]=='A')) y1=y[j],y2=y[j]+n;
else y1=y[j]+n,y2=y[j];
Add(x1,y1);
Add(y2,x2);
}
if(Check()) return;
}
printf("-1");
}
int main(){
scanf("%d%d",&n,&d);
scanf(" %s",s+1);
LL cnt(0);
for(LL i=1;i<=n;++i)
if(s[i]=='x')
pos[++cnt]=i;
else
s[i]='A'+(s[i]-'a');
scanf("%d",&m);
for(LL i=1;i<=m;++i){
scanf("%d",x+i);
scanf(" %c",&p1[i]);
scanf("%d",y+i);
scanf(" %c",&p2[i]);
}
Solve();
return 0;
}