P2163 [SHOI2007]园丁的烦恼
题目
做法
关于拆点,要真想拆直接全部用树状数组水过不就好了
做这题我们练一下\(cdq\)分治
左下角\((x1,y1)\)右上角\((x2,y2)\),查询\(x1≤x≤x2\)&&\(y1≤y≤y2\)的个数
假设点(x,y)为矩形\((x,y)(x,y)\)
其实我们要查询的是\(x1≤x,x2≥x,y1≤y≤y2\)
初始化排序\(x\)降序排,去掉\(x1≤x\),树状数组限制\(x≤x2\),区间查询\(y1≤y≤y2\),就是一三维偏序
讲一下排序吧:
由于我们要查询\(x1≤x\),所以初始化排序\(x\)降序排,\(x1\)我们就不管了
升序排\(x2\)然后进树状数组,\(y2\)其实没用(区间查询就卡过去了)
\(y1≤y\)由于这部分不好直接处理每个点结构体\(y1=y\)然后升序排
最后由于重复点也要计算我们另点的\(y2\),由于查询的\(y2\)有值,\(y2\)升序排,让查询在前
My complete code
常数贼大的代码,还没某dalao不离散跑得快
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<string>
#include<vector>
using namespace std;
typedef int LL;
const LL maxn=2e6;
inline LL Read(){
LL x(0),f(1);char c=getchar();
while(c<'0'||c>'9'){
if(c=='-')f=-1;c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
struct node{
LL x1,y1,x2,y2,id,val;
}a[maxn];
LL n,m,tot1,tot2;
LL tree[maxn],ans[maxn],x[maxn],y[maxn];
inline bool cmp2(node g1,node g2){
return g1.x2==g2.x2?(g1.y1==g2.y1?g1.y2<g2.y2:g1.y1>g2.y1):g1.x2<g2.x2;
}
inline bool cmp1(node g1,node g2){
return (g1.x1^g2.x1)?g1.x1>g2.x1:cmp2(g1,g2);
}
inline LL Lowbit(LL x){
return x&(-x);
}
inline void Add(LL x,LL val){
for(;x<=tot2;x+=Lowbit(x))
tree[x]+=val;
}
inline LL Query(LL x){
LL ret(0);
for(;x;x-=Lowbit(x))
ret+=tree[x];
return ret;
}
void Cdq(LL l,LL r){
if(l==r)
return;
LL mid(l+r>>1);
Cdq(l,mid),Cdq(mid+1,r),
sort(a+l,a+1+mid,cmp2),sort(a+mid+1,a+1+r,cmp2);
LL j(l-1);
for(LL i=mid+1;i<=r;++i){
while(j<mid&&a[j+1].x2<=a[i].x2)
Add(a[j+1].y1,a[j+1].val),++j;
ans[a[i].id]+=Query(a[i].y2)-Query(a[i].y1-1);
}
for(LL i=l;i<=j;++i)
Add(a[i].y1,-a[i].val);
}
int main(){
n=Read(),m=Read();
for(LL i=1;i<=n;++i)
x[++tot1]=a[i].x1=Read()+1,
y[++tot2]=a[i].y1=Read()+1,
a[i].val=1;
for(LL i=1;i<=m;++i){
LL now(n+i);
x[++tot1]=a[now].x1=Read()+1,
y[++tot2]=a[now].y1=Read()+1,
x[++tot1]=a[now].x2=Read()+1,
y[++tot2]=a[now].y2=Read()+1,
a[now].id=i;
}
sort(x+1,x+1+tot1),sort(y+1,y+1+tot2),
tot1=unique(x+1,x+1+tot1)-x-1,tot2=unique(y+1,y+1+tot2)-y-1;
for(LL i=1;i<=n;++i)
a[i].x2=a[i].x1=lower_bound(x+1,x+1+tot1,a[i].x1)-x,
a[i].y1=lower_bound(y+1,y+1+tot2,a[i].y1)-y;
for(LL i=1;i<=m;++i){
LL now(n+i);
a[now].x1=lower_bound(x+1,x+1+tot1,a[now].x1)-x,
a[now].y1=lower_bound(y+1,y+1+tot2,a[now].y1)-y,
a[now].x2=lower_bound(x+1,x+1+tot1,a[now].x2)-x,
a[now].y2=lower_bound(y+1,y+1+tot2,a[now].y2)-y;
}
n+=m,
sort(a+1,a+1+n,cmp1),
Cdq(1,n);
for(LL i=1;i<=m;++i)
printf("%d\n",ans[i]);
return 0;
}