P4388 付公主的矩形(gcd+欧拉函数)
前置芝士
\(gcd\)与欧拉函数
要求对其应用于性质比较熟,否则建议左转百度
思路
有\(n×m\)的矩阵,题目要求对角线经过的格子有\(N\)个,
设函数\(f(x,y)\)为矩阵\((x,y)\)对角线经过的格子
设\(gcd(n,m)=1\),对角线在矩形中不会经过任意一个格点,\(f(n,m)=n+m-1\)
那\(gcd(n,m)!=1\)呢?将这个矩阵拆除\(gcd(n,m)\)个相同的矩阵
其中\(gcd(n',m')=1\),则\(\dfrac{n}{n'}=\dfrac{m}{m'}\)
所以我们能推倒出公式
\(f(n,m)=\dfrac{n}{n'}f(n',m')\)
\(~~~~~~~~~~~~~=\dfrac{n}{n'}×(n'+m'-1)\)
\(~~~~~~~~~~~~~=\dfrac{n×n'}{n'}+\dfrac{m×m'}{m'}-gcd(n,m)\)
\(~~~~~~~~~~~~~=n+m-gcd(n,m)\)
则我们要求\((n,m)\)的对数使得 \(n+m-gcd(n,m)=N\)
设\(i=gcd(n,m)\)
$n+m-gcd(n,m)=N $
\(\Rightarrow \dfrac{n}{i}+\dfrac{m}{i}-1=\dfrac{N}{i}\)
\(\Rightarrow \dfrac{n}{i}+\dfrac{m}{i}=\dfrac{N}{i}+1\)
我们枚举\(gcd(n,m)\)也就是\(i\),那我们怎么求呢?
欧拉函数有一性质\(\varphi(N)\),\(N>2\)时,\(\varphi(N)\)为偶数
所以\(nun=\varphi(\dfrac{N}{i}+1)\)
跑得比较慢(200ms)
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL maxn=1000007;
LL n,tot,ans;
LL phi[maxn],pim[maxn>>1];
inline void First(){
for(LL i=2;i<=n+1;i++){
if(!phi[i])
phi[i]=i-1,
pim[++tot]=i;
for(LL j=1;j<=tot&&pim[j]*i<maxn;j++)
if(i%pim[j]==0){
phi[i*pim[j]]=phi[i]*pim[j];
break;
}else
phi[i*pim[j]]=phi[i]*(pim[j]-1);
}
}
int main () {
scanf("%lld",&n);
First();
for(LL i=1;i<=n;i++)
if(n%i==0)
ans+=phi[n/i+1];
printf("%lld",ans+1>>1);
return 0;
}
剪一下枝(100ms)
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
inline int Read(){
int x=0,f=1; char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-'0',c=getchar();
return x*f;
}
const LL maxn=1000007;
int n,tot;
int phi[maxn],pim[maxn>>1];
LL ans;
inline void First(){
for(int i=2;i<=n+1;i++){
if(!phi[i])
phi[i]=i-1,
pim[++tot]=i;
for(int j=1;j<=tot&&pim[j]*i<maxn;j++)
if(i%pim[j]==0){
phi[i*pim[j]]=phi[i]*pim[j];
break;
}else
phi[i*pim[j]]=phi[i]*(pim[j]-1);
}
}
int main () {
n=Read();
First();
for(int i=1;i*i<=n;i++)
if(n%i==0)
if(i*i==n)
ans+=phi[i+1];
else
ans+=phi[i+1]+phi[n/i+1];
printf("%lld",ans+1>>1);
return 0;
}