BZOJ2648: SJY摆棋子
题目大意
二维平面内,支持插入点和查询最近点(曼哈顿距离)
K-D Tree的模板题
插入很暴力就不讲了
查询时,$ans$为全局变量,先用该点位置与更新$ans$,算出与左右子树矩阵的曼哈顿距离
如果$ans$$<$子树距离则不下移了
$dl$表与左子树距离,$dr$表与右子树距离,这里有一个很巧妙的剪枝
if(dl<dr){ if(dl<ans) Query(l,tmp); if(dr<ans) Query(r,tmp); } else{ if(dr<ans) Query(r,tmp); if(dl<ans) Query(l,tmp); }
表面看上部分似乎与下部分一样,其实这里利用距离确定先后$ans$能尽量接近最终值,起到剪枝效果
My complete code:
#include<bits/stdc++.h> using namespace std; typedef long long LL; const LL maxn=1000000; const LL inf=0x3f3f3f3f; struct code{ LL d[2]; }sot[maxn],tmp; struct node{ LL son[2],mi[2],mx[2],size; code tp; }tree[maxn]; LL n,m,WD,cnt,nod,root,ans,top; LL zhan[maxn]; inline LL Read(){ LL x=0,f=1; char c=getchar(); while(c<'0'||c>'9'){ if(c=='-') f=-1; c=getchar(); } while(c>='0'&&c<='9'){ x=(x<<3)+(x<<1)+c-'0'; c=getchar(); }return x*f; } inline void Update(LL now){ LL l=tree[now].son[0],r=tree[now].son[1]; tree[now].size=tree[l].size+tree[r].size+1; for(LL i=0;i<=1;++i) tree[now].mi[i]=min(tree[now].tp.d[i],min(tree[l].mi[i],tree[r].mi[i])), tree[now].mx[i]=max(tree[now].tp.d[i],max(tree[l].mx[i],tree[r].mx[i])); } inline LL Newnode(){ return top!=0?zhan[top--]:++nod; } bool operator < (code g1,code g2){ return g1.d[WD]<g2.d[WD]; } LL Build(LL l,LL r,LL wd){ if(l>r) return 0; LL mid=(l+r)>>1,now=Newnode(); WD=wd, nth_element(sot+l,sot+mid,sot+r+1), tree[now].tp=sot[mid], tree[now].son[0]=Build(l,mid-1,wd^1), tree[now].son[1]=Build(mid+1,r,wd^1), Update(now); return now; } void Pai(LL now,LL num){ LL l=tree[now].son[0],r=tree[now].son[1]; if(l) Pai(l,num); sot[num+tree[l].size+1]=tree[now].tp; zhan[++top]=now; if(r) Pai(r,num+tree[l].size+1); } inline void Check(LL &now,LL wd){ LL l=tree[now].son[0],r=tree[now].son[1]; if(tree[now].size*0.75<tree[l].size || tree[now].size*0.75<tree[r].size) Pai(now,0), now=Build(1,tree[now].size,wd); } void Insert(LL &now,code tmp,LL wd){ if(!now){ now=Newnode(), tree[now].tp=tmp, tree[now].son[0]=tree[now].son[1]=0, Update(now); return; } tmp.d[wd]<tree[now].tp.d[wd]?Insert(tree[now].son[0],tmp,wd^1):Insert(tree[now].son[1],tmp,wd^1); Update(now), Check(now,wd); } inline LL Dis(code g1,code g2){ return abs(g1.d[0]-g2.d[0])+abs(g1.d[1]-g2.d[1]); } inline LL Mh(code tmp,LL now){ LL sum=0; for(LL i=0;i<=1;++i) sum+=max((long long)0,tmp.d[i]-tree[now].mx[i])+max((long long)0,tree[now].mi[i]-tmp.d[i]); return sum; } void Query(LL now,code tmp){ LL l=tree[now].son[0],r=tree[now].son[1]; ans=min(ans,Dis(tmp,tree[now].tp)); LL dl=inf,dr=inf; if(l) dl=min(dl,Mh(tmp,l)); if(r) dr=min(dr,Mh(tmp,r)); if(dl<dr){ if(dl<ans) Query(l,tmp); if(dr<ans) Query(r,tmp); } else{ if(dr<ans) Query(r,tmp); if(dl<ans) Query(l,tmp); } } int main(){ n=Read(),m=Read(), tree[0].mi[0]=tree[0].mi[1]=inf, tree[0].mx[0]=tree[0].mx[1]=-inf; for(LL i=1;i<=n;++i) sot[i].d[0]=Read(), sot[i].d[1]=Read(); root=Build(1,n,1); while(m--){ LL op=Read(); tmp.d[0]=Read(), tmp.d[1]=Read(); if(op==1) Insert(root,tmp,1); else{ ans=inf; Query(root,tmp); printf("%lld\n",ans); } } }/* 0 10000 1 1 1 1 1 5 1 2 5 1 5 2 1 6 7 */