luoguP3769 [CH弱省胡策R2]TATT
luoguP3769 [CH弱省胡策R2]TATT
PS:做这题前先切掉 P4148简单题,对于本人这样的juruo更助于理解,当然dalao就当练练手吧
题目大意: 现在有n个四维空间中的点,请求出一条最长的路径,满足任意一维坐标都是单调不降的
偏模板的K-D Tree
题目没规定起点,则从任意一点出发,按维度优先级以及每个维度坐标为关键字排序,
每点作为终点查询一次,再插入,其他就是模板化的代码了
这里用到了一个小技巧,就是初始化将子树0的值赋值,避免过多的特判,使代码更加简洁
for(LL i=0;i<=3;++i) tree[0].mi[i]=inf,tree[0].mx[i]=-inf; tree[0].maxn=-inf;
My complete code:
#include<cstdio> #include<cstdlib> #include<cstring> #include<algorithm> #include<iostream> using namespace std; typedef long long LL; const LL maxn=1e5+10; const LL inf=1e9; inline LL read(){ LL x=0,f=1; char c=getchar(); while(c<'0'||c>'9'){ if(c=='-') f=-1; c=getchar(); } while(c>='0'&&c<='9'){ x=x*10+c-'0'; c=getchar(); } return x*f; } struct node{ LL son[2],d[4],maxn,size,val,mi[4],mx[4]; }tree[maxn],t2[maxn],tmp; bool operator < (node g1,node g2){ for(LL i=0;i<=3;++i){ if(g1.d[i]<g2.d[i]) return 1; if(g1.d[i]>g2.d[i]) return 0; }return 0; } LL n,ans,ans_maxn,top,cnt,root,WD; LL sta[maxn]; inline void update(LL now){ LL son0=tree[now].son[0],son1=tree[now].son[1]; for(LL i=0;i<=3;++i){ tree[now].mi[i]=min(min(tree[son0].mi[i],tree[son1].mi[i]),tree[now].d[i]); tree[now].mx[i]=max(max(tree[son0].mx[i],tree[son1].mx[i]),tree[now].d[i]); } tree[now].maxn=max(tree[now].val,max(tree[son0].maxn,tree[son1].maxn)); tree[now].size=tree[son0].size+tree[son1].size+1; } inline bool cmp(LL g1,LL g2){ return tree[g1].d[WD]<tree[g2].d[WD]; } LL build(LL l,LL r,LL wd){ if(l>r) return 0; LL mid=(l+r)>>1; WD=wd; nth_element(sta+l,sta+mid,sta+r+1,cmp); LL now=sta[mid]; tree[now].son[0]=build(l,mid-1,(wd+1)%4); tree[now].son[1]=build(mid+1,r,(wd+1)%4); update(now); return now; } void pai(LL now){ if(!now) return; sta[++top]=now; LL son0=tree[now].son[0],son1=tree[now].son[1]; pai(son0); pai(son1); } inline void check(LL &now,LL wd){ LL son0=tree[now].son[0],son1=tree[now].son[1]; if(tree[now].size*0.75<tree[son0].size||tree[now].size*0.75<tree[son1].size){ top=0; pai(now); now=build(1,tree[now].size,wd); } } void insert(LL &now,LL wd){ if(!now){ now=++cnt; tree[now]=tmp; for(LL i=0;i<=3;++i) tree[now].mi[i]=tree[now].mx[i]=tree[now].d[i]; tree[now].maxn=tree[now].val; tree[now].size=1; return; } if(tmp.d[wd]<tree[now].d[wd]) insert(tree[now].son[0],(wd+1)%4); else insert(tree[now].son[1],(wd+1)%4); update(now); check(now,wd); } inline LL dis(node g1,node g2){ for(LL i=0;i<=3;++i) if(g1.d[i]>g2.d[i]) return 0; return g1.val; } inline LL into(LL now){ if(!now) return 0; LL sum=0; for(LL i=0;i<=3;++i) if(tree[now].mx[i]<=tmp.d[i]) ++sum; if(sum==4) return 4; for(LL i=0;i<=3;++i) if(tree[now].mi[i]>tmp.d[i]) return 0; return 1; } void query(LL now){ ans=max(dis(tree[now],tmp),ans); LL son0=tree[now].son[0],son1=tree[now].son[1]; LL dl=into(son0),dr=into(son1); if(dl==4) ans=max(tree[son0].maxn,ans); else if(dl&&ans<tree[son0].maxn) query(son0); if(dr==4) ans=max(tree[son1].maxn,ans); else if(dr&&ans<tree[son1].maxn) query(son1); } int main(){ n=read(); for(LL i=1;i<=n;++i){ for(LL j=0;j<=3;++j) t2[i].d[j]=read(); t2[i].val=1; } sort(t2+1,t2+n+1); for(LL i=0;i<=3;++i) tree[0].mi[i]=inf,tree[0].mx[i]=-inf; tree[0].maxn=-inf; for(LL i=1;i<=n;++i){ ans=0; tmp=t2[i]; query(root); tmp.val+=ans; ans_maxn=max(tmp.val,ans_maxn); insert(root,0); } printf("%lld",ans_maxn); return 0; }