Gym - 101775A Chat Group 组合数+逆元+快速幂

It is said that a dormitory with 6 persons has 7 chat groups ^_^. But the number can be even larger: since every 3 or more persons could make a chat group, there can be 42 different chat groups.

Given N persons in a dormitory, and every K or more persons could make a chat group, how many different chat groups could there be?


Input

The input starts with one line containing exactly one integer T which is the number of test cases.

Each test case contains one line with two integers N and K indicating the number of persons in a dormitory and the minimum number of persons that could make a chat group.

  • 1 ≤ T ≤ 100.
  • 1 ≤ N ≤ 109.
  • 3 ≤ K ≤ 105.
Output

For each test case, output one line containing "Case #x: y" where x is the test case number (starting from 1) and y is the number of different chat groups modulo 1000000007.

Example
Input
1
6 3
Output
Case #1: 42

 

题解:

看起来很简单的题   我还是做了很久 基础知识点有很多漏洞吧

本题就是一个 C(n,k)+C(n,k+1)+...+C(n,n) 的过程

如果暴力算的话会超时  哭叽叽

要知道组合数的总和是2^n

所以转化成 2^n - C(n,0)+C(n,1)+...+C(n,k-1)

加减乘可直接用同余定理直接拆开算  除法不行 

所以利用费马小定理(假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p),即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。)

得到推论  a*a(p-2)≡1(mod p)对于整数a,p,a关于p的逆元就是a^(p-2),直接快速幂解之即可,但注意这个定理要求a,p互质

利用上述方法求得逆元

计算乘方时用到快速幂

如此这一问题便解决了

(我的第一篇博客,欢迎大家批评指正^-^)

#include <iostream>
#include <stdio.h>

using namespace std;
typedef long long ll;
const int N=1e5+7;
const ll mod=1e9+7;

ll quick(ll a,ll b)            //快速幂
{
    ll ans=1;
    a%=mod;
    while(b){
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}

int main()
{
    ll n,k,i;
    int l=1,t;
    scanf("%d",&t);
    while(t--){
        scanf("%I64d%I64d",&n,&k);
        ll ans=quick(2,n)-1;      //2^n-C(n,0)
        ll cur=n;
        for(i=1;i<k;i++){
            ans=(ans+mod-cur)%mod;       //emmm  为啥要加个mod我还不太了解,如果有大佬知道,麻烦指点一下
            cur=cur*(n-i)%mod;
            cur=cur*quick(i+1,mod-2)%mod;        //乘以逆元
        }
        printf("Case #%d: %I64d\n",l++,ans);
    }
    return 0;
}

 

posted @ 2018-09-06 20:49  星辰大海。  阅读(571)  评论(1编辑  收藏  举报