多路查找树(B树,B+树、B*树)

1.二叉树问题分析

二叉树的操作效率较高,但是也存在问题, 请看下面的二叉树

1661170856332

1)二叉树需要加载到内存的,如果二叉树的节点少,没有什么问题,但是如果二叉树的节点很多(比如1亿, 就存在如下问题

2)问题1:在构建二叉树时,需要多次进行i/o操作(海量数据存在数据库或文件中),节点海量,构建二叉树时,速度有影响.

3)问题2:节点海量,也会造成二叉树的高度很大,会降低操作速度.

2.多叉树解决二叉树问题

1)在二叉树中,每个节点有数据项,最多有两个子节点。如果允许每个节点可以有更多的数据项和更多的子节点,就是多叉树(multiway tree)

2)后面我们讲解的2-3树,2-3-4树就是多叉树,多叉树通过重新组织节点,减少树的高度,能对二叉树进行优化。

3)举例说明(下面2-3树就是一颗多叉树)

1661171017729

3.B树的基本介绍

B树通过重新组织节点,降低树的高度,并且减少i/o读写次数来提升效率。

1661171148352

1)如图B树通过重新组织节点, 降低了树的高度.

2)文件系统及数据库系统的设计者利用了磁盘预读原理,将一个节点的大小设为等于一个页(页得大小通常为4k),这样每个节点只需要一次I/O就可以完全载入

3)将树的度M设置为1024,在600亿个元素中最多只需要4次I/O操作就可以读取到想要的元素, B树(B+)广泛应用于文件存储系统以及数据库系统中

3.1 B树的介绍

B-tree树即B树,B即Balanced,平衡的意思。有人把B-tree翻译成B-树,容易让人产生误解。会以为B-树是一种树,而B树又是另一种树。实际上,B-tree就是指的B树。

我们在学习Mysql时,经常听到说某种类型的索引是基于B树或者B+树的,如图:

1661172292657

B树的说明:

1)B树的阶:节点的最多子节点个数。比如2-3树的阶是3,2-3-4树的阶是4

2)B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点

3)关键字集合分布在整颗树中, 即叶子节点和非叶子节点都存放数据.

4)搜索有可能在非叶子结点结束

5)其搜索性能等价于在关键字全集内做一次二分查找

4. 2-3树基本介绍

2-3树是最简单的B树结构, 具有如下特点:

1)2-3树的所有叶子节点都在同一层.(只要是B树都满足这个条件)

2)有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点.

3)有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点.

4)2-3树是由二节点和三节点构成的树。

4.1 2-3树应用案例

将数列{16, 24, 12, 32, 14, 26, 34, 10, 8, 28,38, 20} 构建成2-3树,并保证数据插入的
大小顺序。

插入规则:

1)2-3树的所有叶子节点都在同一层.(只要是B树都满足这个条件)

2)有两个子节点的节点叫二节点,二节点要么没有子节点,要么有两个子节点.

3)有三个子节点的节点叫三节点,三节点要么没有子节点,要么有三个子节点

4)当按照规则插入一个数到某个节点时,不能满足上面三个要求,就需要拆,先向上拆,如果上层满,则拆本层,拆后仍然需要满足上面3个条件。

5)对于三节点的子树的值大小仍然遵守(BST 二叉排序树)的规则

1661171674550

5. 234树

概念和23树类似,也是一种B树。 如图:

1661172157545

6.B+树的介绍

B+树是B树的变体,也是一种多路搜索树。

B+树的说明:

1)B+树的搜索与B树也基本相同,区别是B+树只有达到叶子结点才命中(B树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找

2)所有关键字都出现在叶子结点的链表中(即数据只能在叶子节点【也叫稠密索引】),且链表中的关键字(数据)恰好是有序的。

3)不可能在非叶子结点命中

4)非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层

5)更适合文件索引系统

6)B树和B+树各有自己的应用场景,不能说B+树完全比B树好,反之亦然.

1661172522191

7.B*树的介绍

B*树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针。

B*树的说明:

1)B树定义了非叶子结点关键字个数至少为(2/3)M,即块的最低使用率为2/3,而B+树的块的最低使用率为B+树的1/2。

2)从第1个特点我们可以看出,B*树分配新结点的概率比B+树要低,空间使用率更高

1661172955927

posted @ 2022-08-22 21:02  半路_出家ren  阅读(99)  评论(0编辑  收藏  举报
返回顶端