BZOJ4466 [Jsoi2013]超立方体
Description
定义“超立方图”为:有\(2^k\)个点,以\(k\)位二进制数编号,两个点之间有边当且仅当它们的编号恰有一位不同。给出一个图,问它是否与“超立方图”同构。如果是,输出任意一种点与点的对应方案。(\(n \leq 32768\))
Solution
先判断点数和边数、每个点的度数。
之后假设同构,求出同构方案后再check一遍。
显然超立方图的每个点都是对称的,于是我们任取一个点作为0,与它相邻的\(k\)个点编号为\(2^i, i=0\dots k-1\)。
之后,所有与\(0\)距离为\(2\)的点一定恰好与两个距离为\(1\)的点连边,且它的编号为这两个点编号的bit or。
与\(0\)距离为\(3\)的点的编号是所有与它相连的已知编号的点(距离一定是\(2\))的bit or。
以此类推。bfs一遍即可。
最后不要忘记check。
Code
#include <algorithm>
#include <cstdio>
#include <cstring>
const int N = 33000;
const int M = 2000050;
int pre[N], nxt[M], to[M], cnt, deg[N];
int A[N], que[N];
bool vis[N];
inline void addEdge(int x, int y) {
++deg[x];
nxt[cnt] = pre[x];
to[pre[x] = cnt++] = y;
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
int n, m, x, y;
scanf("%d%d", &n, &m);
int k = 1;
while ((1 << k) < n) ++k;
memset(pre, -1, sizeof pre);
memset(deg, 0, sizeof deg);
cnt = 0;
while (m--) {
scanf("%d%d", &x, &y);
addEdge(x, y);
addEdge(y, x);
}
bool ok = true;
for (int i = 0; i < n; ++i)
ok = ok && deg[i] == k;
if (!ok) { puts("-1"); continue; }
memset(A, 0, sizeof A);
memset(vis, 0, sizeof vis);
int hd = 0, tl = 0;
vis[0] = true;
for (int i = pre[0], j = 1; ~i; i = nxt[i], j <<= 1)
A[que[tl++] = to[i]] = j;
while (hd < tl) {
int x = que[hd++];
vis[x] = true;
for (int i = pre[x]; ~i; i = nxt[i])
if (!vis[to[i]]) {
if (!A[to[i]]) que[tl++] = to[i];
A[to[i]] |= A[x];
}
}
memset(vis, 0, sizeof vis);
for (int i = 0; i < n; ++i) vis[A[i]] = true;
for (int i = 0; i < n; ++i) ok = ok && vis[i];
if (!ok) { puts("-1"); continue; }
for (int i = 0; i < n; ++i) {
for (int j = 0; j < k; ++j) vis[A[i] ^ (1 << j)] = false;
for (int j = pre[i]; ~j; j = nxt[j]) vis[A[to[j]]] = true;
for (int j = 0; j < k; ++j) ok = ok && vis[A[i] ^ (1 << j)];
}
if (!ok) { puts("-1"); continue; }
for (int i = 0; i < n; ++i)
printf("%d ", A[i]);
puts("");
}
}