BZOJ3994 [SDOI2015]约数个数和
Description
Input
输入文件包含多组测试数据。
Output
T行,每行一个整数,表示你所求的答案。
Sample Input
7 4
5 6
Sample Output
121
HINT
1<=N, M<=50000
Solution
计算$d(ij)$时,我们把$ij$的每个约数$d$映射到$(gcd(d, i), \frac{d}{gcd(d, i)})$,那么这两个数一定分别是$i, j$的因数,且$(a, b)$对应一个因数当且仅当$gcd(\frac ia, b) = 1$,所以
$$d(ij) = \sum_{x|i}\sum_{y|j} [gcd(\frac ix, y) = 1] = \sum_{x'|i}\sum_{y|j} [gcd(x', y) = 1]$$
于是
$$\begin{aligned}
\sum_{i=1}^N\sum_{j=1}^Md(ij)
&=\sum_{i=1}^N\sum_{j=1}^M\sum_{x|i}\sum_{y|j} [gcd(x, y) = 1]\\
&=\sum_{x=1}^N\sum_{y=1}^M [gcd(x, y) = 1]\left\lfloor\frac Nx\right\rfloor \left\lfloor\frac My\right\rfloor
\end{aligned}$$
我们令$f(d) = \sum_{x=1}^N\sum_{y=1}^M [gcd(x, y) = d]\left\lfloor\frac Nx\right\rfloor \left\lfloor\frac My\right\rfloor$,有
$$\begin{aligned}
\sum_{n|d}f(d)
&= \sum_{x=1}^N\sum_{y=1}^M [n|gcd(x, y)]\left\lfloor\frac Nx\right\rfloor \left\lfloor\frac My\right\rfloor\\
&= \sum_{i=1}^{\left\lfloor\frac Nn\right\rfloor}\sum_{j=1}^{\left\lfloor\frac Mn\right\rfloor} \left\lfloor\frac{\left\lfloor\frac Nn\right\rfloor}i \right\rfloor\left\lfloor\frac{\left\lfloor\frac Mn\right\rfloor}j\right\rfloor
\end{aligned}$$
如果我们令$t(n) = \sum_{i=1}^n \left\lfloor\frac ni\right\rfloor$,那上式就等于$t(\left\lfloor\frac Nn\right\rfloor)t(\left\lfloor\frac Mn\right\rfloor)$
于是$f(n) = \sum_{n|d} \mu(\frac dn)t(\left\lfloor\frac Nd\right\rfloor)t(\left\lfloor\frac Md\right\rfloor)$
$ans = f(1) = \sum_{n=1}^{min(N, M)}\mu(n)t(\left\lfloor\frac Nn\right\rfloor)t(\left\lfloor\frac Mn\right\rfloor)$
预处理$\mu(n)$的前缀和、$O(n\sqrt n)$预处理所有$t(n)$,查询时$O(\sqrt n)$即可。
代码:
#include <algorithm> #include <cstdio> typedef long long LL; const int N = 50050; LL t[N]; LL calcT(int n) { LL ans = 0; for (int i = 1, last; i <= n; i = last + 1) { last = n / (n / i); ans += n / i * (last - i + 1); } return ans; } bool mark[N]; int pr[N], pcnt = 0, mu[N], S[N]; void getMu() { mu[1] = 1; for (int i = 2; i < N; ++i) { if (!mark[i]) mu[pr[pcnt++] = i] = -1; for (int j = 0; j < pcnt && (LL)i * pr[j] < N; ++j) { mark[i * pr[j]] = 1; if (!(i % pr[j])) { mu[i * pr[j]] = 0; break; } mu[i * pr[j]] = -mu[i]; } } for (int i = 1; i < N; ++i) S[i] = S[i - 1] + mu[i]; } LL solve(int n, int m) { LL ans = 0; for (int i = 1, last; i <= n && i <= m; i = last + 1) { last = std::min(n / (n / i), m / (m / i)); ans += t[n / i] * t[m / i] * (S[last] - S[i - 1]); } return ans; } int main() { for (int i = 1; i < N; ++i) t[i] = calcT(i); getMu(); int T, n, m; scanf("%d", &T); while (T--) { scanf("%d%d", &n, &m); printf("%lld\n", solve(n, m)); } return 0; }