BZOJ4001 [TJOI2015]概率论

Description

 

Input

输入一个正整数N,代表有根树的结点数

 

Output

 输出这棵树期望的叶子节点数。要求误差小于1e-9

 

Sample Input

1

Sample Output

1.000000000

HINT

 1<=N<=10^9

题解

令$f_i$表示n个点无标号二叉树个数,那么枚举根的左子树的点数,可以得到

$$f_n = [n=0] + \sum_{i = 0}^{n - 1} f_if_{n-i-1}$$

(一眼看过去就是卡特兰数,但是现在暂时用不到)

再令$g_i$表示n个点的无标号二叉树的叶节点数之和,则枚举左子树的点数,有

$$g_n = [n=1] + \sum_{i = 0}^{n - 1} g_if_{n-i-1}$$

写出$\{f_i\}, \{g_i\}$的生成函数的关系式,则有

$$F(x) = 1 + xF(x)^2$$

$$G(x) = x + xG(x)F(x)$$

解得

$$F(x) = \frac{1-\sqrt{1-4x}}{2x}$$

$$G(x) = \frac{2x}{\sqrt{1-4x}}$$

可以发现

$$\frac{d}{dx}(xF(x)) = \frac{d\frac{1-\sqrt{1-4x}}2}{dx} = \frac 12*4x*\frac 1{\sqrt{1-4x}} = \frac 2{\sqrt{1-4x}} = \frac{G(x)}x$$

所以有$g_n = nf_{n-1}$,又因为$f_n = H_n$,所以

$$ans = \frac{g_n}{f_n} = \frac{H_{n-1}n}{H_n} = \frac{n(n+1)}{2(2n-1)}$$

附代码(其实也没什么了):

#include <algorithm>
#include <cstdio>
int main() {
  double n;
  scanf("%lf", &n);
  printf("%.9lf", n * (n + 1) / 2 / (2 * n - 1));
  return 0;
}

  

posted @ 2017-08-07 20:34  _rqy  阅读(368)  评论(0编辑  收藏  举报