dp合集 广场铺砖问题&&硬木地板
dp合集 广场铺砖问题&&硬木地板
很经典了吧。。。
前排:思想来自yali朱全民dalao的ppt百度文库免费下载
后排:STO朱全民OTZ
广场铺砖问题
有一个 W 行 H 列的广场,需要用 1*2 小砖铺盖,小砖之间互相不能重叠,问
有多少种不同的铺法?
输入数据:
只有一行 2 个整数,分别为 W 和 H,( 1<=W, H<=11)
输出数据:
只有 1 个整数,为所有的铺法数。
样例:
Floor.in
2 4
Floor.out
5
dfs、bfs。。。算了吧
然而我看了一眼ppt,这不是SBT吗???
然后就写出来了
设f[i][j]表示第i行,状态为j的转移方法数
具体思想:一个状态有两种方式转移:全竖放转移and横放一个转移。
然后WA了
原因:横放可能有重复(比如□□□□,可以先左边两个也可以先右边两个),然后GG
// It is made by XZZ
#include<cstdio>
#include<algorithm>
#define lb(a) (a&-a)
#define Fname "floor"
using namespace std;
#define rep(a,b,c) for(rg int a=b;a<=c;a++)
#define drep(a,b,c) for(rg int a=b;a>=c;a--)
#define erep(a,b) for(rg int a=fir[b];a;a=nxt[a])
#define il inline
#define rg register
#define vd void
typedef long long ll;
il int gi(){
rg int x=0;rg char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x;
}
int f[12][1<<11];
int cnt[1<<11],s[1<<11];
il bool cmp(int a,int b){return cnt[a]<cnt[b];}
int main(){
#ifdef xzz
freopen(Fname".in","r",stdin);
freopen(Fname".out","w",stdout);
#endif
int n=gi(),m=gi();
if((n*m)&1){puts("0");return 0;}
f[0][0]=1;
int tot=(1<<m)-1;
rep(i,0,tot){
int j=i;
while(j)++cnt[i],j-=lb(j);
}
rep(i,0,tot)s[i]=i;
sort(s+1,s+tot+1,cmp);
int g,j;
rep(i,0,n-1)rep(jj,0,tot){
j=s[jj];
g=f[i][j];
printf("f[%d][%d]=%d\n",i,j,f[i][j]);
f[i+1][(~j)&tot]+=g;//所有的都竖放
rep(k,0,m-2)if(!((1<<k)&j)&&!((1<<k+1)&j))f[i][j|(1<<k)|(1<<k+1)]+=g;
}
printf("%d\n",f[n][0]);
return 0;
}
解决办法:一次转移
即通过dfs完成转移,做到不重不漏
在一个状态下dfs下一排可能的所有状态
具体见ppt
// It is made by XZZ
#include<cstdio>
#include<algorithm>
#define lb(a) (a&-a)
#define Fname "floor"
using namespace std;
#define rep(a,b,c) for(rg int a=b;a<=c;a++)
#define drep(a,b,c) for(rg int a=b;a>=c;a--)
#define erep(a,b) for(rg int a=fir[b];a;a=nxt[a])
#define il inline
#define rg register
#define vd void
typedef long long ll;
il int gi(){
rg int x=0;rg char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x;
}
ll f[12][1<<11],n,m;
il vd dfs(const ll&F,const int&i,const int&j,int x,int now){
if(now==m)f[i+1][x]+=F;
else if(j&(1<<now))dfs(F,i,j,x,now+1);//已经有了
else{
dfs(F,i,j,x|(1<<now),now+1);//竖着
if((now!=m-1)&&!(j&(1<<now+1)))dfs(F,i,j,x,now+2);//横着
}
}
int main(){
#ifdef xzz
freopen(Fname".in","r",stdin);
freopen(Fname".out","w",stdout);
#endif
n=gi(),m=gi();
if((n*m)&1){puts("0");return 0;}
f[0][0]=1;
rep(i,0,n-1)rep(j,0,(1<<m)-1)dfs(f[i][j],i,j,0,0);
printf("%lld\n",f[n][0]);
return 0;
}
其实还可以有更快的:每个j转移过去的都相同,可以先预处理每个j转移的,用邻接表实现,应该快的飞起
虽然我懒得写了(逃
硬木地板
举行计算机科学家盛宴的大厅的地板为 M×N (1<=M<=9, 1<=N<=9)的矩形。现在必须要铺上硬木地板砖。可以使用的地板砖形状有两种:
- 2×1 的矩形砖
- 2×2 中去掉一个 1×1 的角形砖
你需要计算用这些砖铺满地板共有多少种不同的方案。
注意:必须盖满,地板砖数量足够多,不能存在同时被多个板砖覆盖的部分。
输入数据
包含 M 和 N。
输出数据
输出方案总数,如果不可能那么输出 0 。
样例
输入:floor.in
2 3
输出:floor.out
5
会上面那个基本就会这个了额。。。
改一下dfs就好了
// It is made by XZZ
#include<cstdio>
#include<algorithm>
#define Fname "floor2"
using namespace std;
#define rep(a,b,c) for(rg int a=b;a<=c;a++)
#define drep(a,b,c) for(rg int a=b;a>=c;a--)
#define erep(a,b) for(rg int a=fir[b];a;a=nxt[a])
#define il inline
#define rg register
#define vd void
typedef long long ll;
il int gi(){
rg int x=0;rg char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x;
}
ll f[10][1<<9],n,m;
il vd dfs(const ll&F,const int&i,const int&j,int x,int now){
if(now==m)f[i+1][x]+=F;
else if(j&(1<<now))dfs(F,i,j,x,now+1);
else{
if(!(x&(1<<now))){
dfs(F,i,j,x|(1<<now),now+1);//竖着
if(now&&(!(x&(1<<now-1))))dfs(F,i,j,x|(1<<now)|(1<<now-1),now+1);//┘
if(now!=m-1)dfs(F,i,j,x|(1<<now)|(1<<now+1),now+1);//└
}
if((now!=m-1)&&!(j&(1<<now+1))){
dfs(F,i,j,x,now+2);//横着
if(!(x&(1<<now)))dfs(F,i,j,x|(1<<now),now+2);//┌
dfs(F,i,j,x|(1<<now+1),now+2);//┐
}
}
}
int main(){
#ifdef xzz
freopen(Fname".in","r",stdin);
freopen(Fname".out","w",stdout);
#endif
n=gi(),m=gi();
f[0][0]=1;
rep(i,0,n-1)rep(j,0,(1<<m)-1)dfs(f[i][j],i,j,0,0);
printf("%lld\n",f[n][0]);
return 0;
}
PS.具体参见上面ppt链接
博主是蒟蒻,有问题请指出,谢谢!
本博客中博文均为原创,未经博主允许请勿随意转载,谢谢。
本博客中博文均为原创,未经博主允许请勿随意转载,谢谢。