BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI
求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m\)
\(\sum_{i=1}^{n}\sum_{j=1}^{m}(\frac{ij}{{\gcd(i,j)}})^{\gcd(i,j)}\)
按套路,提出\(\gcd(i,j)\),枚举的\(i\),\(j\)都除\(g\)
\(\sum_{g=1}^ng^g\sum_{i=1}^{n/g}\sum_{j=1}^{m/g}(ij)^g[gcd(i,j)=1]\)
\([gcd(i,j)=1]\)改成约数mu之和
\(\sum_{g=1}^ng^g\sum_{i=1}^{n/g}\sum_{j=1}^{m/g}(ij)^g\sum_{k|gcd(i,j)}\mu(k)\)
\(\sum_{g=1}^ng^g\sum_{k=1}^{n/g}\mu(k)k^{2g}\sum_{i=1}^{n/gk}\sum_{j=1}^{m/gk}(ij)^g\)
\(\sum_{g=1}^ng^g\sum_{k=1}^{n/g}\mu(k)k^{2g}\sum_{i=1}^{n/gk}i^g\sum_{j=1}^{m/gk}j^g\)
然后就能暴力求了。23333
博主是蒟蒻,有问题请指出,谢谢!
本博客中博文均为原创,未经博主允许请勿随意转载,谢谢。
本博客中博文均为原创,未经博主允许请勿随意转载,谢谢。