并不对劲的复健训练-bzoj5301:loj2534:p4462 [CQOI2018]异或序列

题目大意

给出一个序列\(a_1,...,a_n\)(\(a,n\leq 10^5\)),一个数\(k\)(\(k\leq 10^5\)),\(m\)(\(m\leq10^5\))次询问,每次询问给\(l,r\),求\([l,r]\)有多少个子区间\([x,y]\)满足\(a_x \bigoplus ...\bigoplus a_y=k\)

题解

求前缀异或和\(s_1,...,s_n\),询问变成对于每个\(x\in [l,r]\),总共有多少\(y\in[l-1,x)\)满足\(a_x\bigoplus a_y=k\),即询问有多少个\(y\in[l-1,x)\)满足\(a_x\bigoplus k=a_y\)
这样就会有一个暴力的想法:从\(l\)\(r\)枚举\(x\),维护\(a_{l-1},...,a_{x-1}\)中每个值的出现次数。
发现\(k\)不变,没有修改或强制在线,就可以考虑离线。
假设当前考虑的区间是\([l_0,r_0]\),把区间变成\([l_0-1,r_0]\)时要考虑\(a_{l_0-2}\)\(a_{l_0-1},...,a_{r_0}\)的贡献。把区间变成\([l_0+1,r_0]\)时同理。
假设当前考虑的区间是\([l_0,r_0]\),把区间变成\([l_0,r_0+1]\)时要考虑\(a_{r_0+1}\)\(a_{l_0-1},...,a_{r_0}\)的贡献。把区间变成\([l_0,r_0-1]\)时同理。

代码
#include<algorithm>
#include<bitset>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define view(u,k) for(int k=fir[u];k!=-1;k=nxt[k])
#define maxn 100007
#define maxk ((1<<17)+1)
#define LL long long
using namespace std;
int read()
{
	int x=0,f=1;char ch=getchar();
	while(!isdigit(ch)&&ch!='-')ch=getchar();
	if(ch=='-')f=-1,ch=getchar();
	while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
	return x*f;
}
void write(LL x)
{
	if(x==0){putchar('0'),putchar('\n');return;}
	int f=0;char ch[20];
	if(x<0)putchar('-'),x=-x;
	while(x)ch[++f]=x%10+'0',x/=10;
	while(f)putchar(ch[f--]);
	putchar('\n');
	return;
}
int blo=300,num[maxk],num2[maxk],a[maxn],n,m,k;
LL ans[maxn],nowans;
struct quest{int l,r,id;}q[maxn];
bool cmp(quest x,quest y){return (x.l/blo==y.l/blo)?(x.r<y.r):(x.l<y.l);}
void addl(int id,int f)
{
	if(f==1)num2[a[id]]++;
	nowans+=(LL)f*num2[a[id-1]^k];
	if(f==-1)num2[a[id]]--;
	num[a[id-1]]+=f;
}
void addr(int id,int f)
{
	if(f==1)num[a[id-1]]++;
	nowans+=(LL)f*num[a[id]^k];
	if(f==-1)num[a[id-1]]--;
	num2[a[id]]+=f;
}
int main()
{
	n=read(),m=read(),k=read();
	rep(i,1,n)a[i]=a[i-1]^read();
	rep(i,1,m)q[i].l=read(),q[i].r=read(),q[i].id=i;//cout<<"ookk"<<endl;
	sort(q+1,q+m+1,cmp);
	int nowl=1,nowr=1;num[0]++,num2[a[1]]++,nowans+=(k==a[1])?1:0;
	rep(i,1,m)
	{
		while(nowl>q[i].l)nowl--,addl(nowl,1);
		while(nowr<q[i].r)nowr++,addr(nowr,1);
		while(nowl<q[i].l)addl(nowl,-1),nowl++;
		while(nowr>q[i].r)addr(nowr,-1),nowr--;
		ans[q[i].id]=nowans;
	}
	//rep(i,1,n)cout<<a[i]<<" ";cout<<endl;
	//rep(i,1,n)cout<<b[i]<<" ";cout<<endl;
	rep(i,1,m)write(ans[i]);
	return 0;
}
一些感想

想玩飞天虫棍!!!

posted @ 2019-09-17 12:58  echo6342  阅读(112)  评论(0编辑  收藏  举报