并不对劲的bzoj4231: 回忆树

题目大意

\(n\)个点的树,每条边上有一个小写字母。
操作:给定2个点\(u\)\(v\)\(u\)可能等于\(v\))和一个非空字符串\(s\),问从\(u\)\(v\)的简单路径上的所有边按照到\(u\)的距离从小到大的顺序排列后,边上的字符依次拼接形成的字符串中给定的串\(s\)出现了多少次。
\(n,m\leq 10^5,\sum|s|<=3\times 10^5\)

题解

离线

\(u->v\)路径上的字符组成的串的子串匹配上询问串时,记\(x\)\(u,v\)的lca,则有三种可能:1.该子串在路径\(u->x\)上;2.该子串经过点\(x\);3.该子串在路径\(x->v\)上。
第二种情况可以暴力kmp。因为每个询问拿出来暴力kmp的链的长度不超过询问串长度的两倍,所以暴力kmp的总时间复杂度是\(\Theta(\sum |s|)\)
考虑把情况一拆成\(根->u\)减去\(根->x\)
问题转化为如何在比较短的总时间内处理一些“根到某点的路径上出现了多少个询问串”的询问。
在普通的匹配问题中,在AC自动机上每走过一个点,这个点的fail树祖先中关键点的贡献都+1。也就是说,AC自动机上一个点(对应询问串)的贡献(对应在大串上与之匹配的串的个数)为它fail树后代中被走过的点的个数。对fail树按DFS序剖分,可以用树状数组记录一个点子树中被走过的点。
这题可以将询问离线,将询问串建AC自动机,将“根到某点\(k\)的路径上出现了多少个询问串”的询问放在\(k\)上。
树上DFS的同时在AC自动机上匹配,回溯时也要在AC自动机上消去贡献。每走到一个点,在AC自动机上计算放在这个点的询问的答案。
总时间复杂度\(\Theta((n+m)log \space (\sum|s|))\)
情况三同理。

代码

#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define re register
#define maxn 100010
#define maxm 200010
#define maxl 300010
#define cx(c) (c-'a')
#define xc(x) (x+'a')
using namespace std;
inline int read()
{
    int x=0,f=1;
    char ch=getchar();
    while(isdigit(ch)==0 && ch!='-')ch=getchar();
    if(ch=='-')f=-1,ch=getchar();
    while(isdigit(ch))x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
    return x*f;
}
inline void write(int x)
{
    int f=0;char ch[20];
    if(!x){puts("0");return;}
    if(x<0){putchar('-');x=-x;}
    while(x)ch[++f]=x%10+'0',x/=10;
    while(f)putchar(ch[f--]);
    putchar('\n');
}
int v[maxm],nxt[maxm],w[maxm],fir[maxn],tofa[maxn],cnte,kmps[maxl],kmpS[maxn];
int mk[maxm][2],lca[maxm],ans[maxm],anc[maxn][18],dep[maxn],kmpf[maxl];
int n,q;
typedef struct que{int fh,nd,id,tp;}qs;
qs makeq(int a1,int a2,int a3,int a4){qs tmp;tmp.fh=a1,tmp.nd=a2,tmp.id=a3,tmp.tp=a4;return tmp;}
vector<qs>Q[maxn];
void ade(int u1,int v1,int w1){v[cnte]=v1,w[cnte]=w1,nxt[cnte]=fir[u1],fir[u1]=cnte++;}
struct AC
{
    int ch[maxl][26],tr[maxl],dfn[maxl],cntnd,fa[maxl];
    int fir[maxl],nxt[maxl],v[maxl],cnte,tim,siz[maxl];
    char s[maxl];
    queue<int>q;
    void ade(int u1,int v1){v[cnte]=v1,nxt[cnte]=fir[u1],fir[u1]=cnte++;}
    int extend(int len)
    {
        int u=0;
        rep(i,1,len)
        {
            if(!ch[u][cx(s[i])])ch[u][cx(s[i])]=++cntnd;
            u=ch[u][cx(s[i])];
        }
        return u;
    }
    void getfa()
    {
        rep(i,0,25)if(ch[0][i])q.push(ch[0][i]),fa[ch[0][i]]=0;
        while(!q.empty())
        {
            int u=q.front();q.pop();
            rep(i,0,25)
            {
                if(!ch[u][i])ch[u][i]=ch[fa[u]][i];
                else fa[ch[u][i]]=ch[fa[u]][i],q.push(ch[u][i]);
            }
        }
        rep(i,1,cntnd)ade(fa[i],i);
    }
    void getdf(int u){dfn[u]=++tim;siz[u]=1;for(int k=fir[u];k!=-1;k=nxt[k])getdf(v[k]),siz[u]+=siz[v[k]];}
    inline int lt(int x){return x&(-x);}
    void add(int x,int k){for(;x<=tim;x+=lt(x))tr[x]+=k;}
    int ask(int x){int k=0;for(;x;x-=lt(x))k+=tr[x];return k;} 
    int query(int u){return ask(dfn[u]+siz[u]-1)-ask(dfn[u]-1);}
  
}t[2];
void getf(int u)
{
    rep(i,1,17)anc[u][i]=anc[anc[u][i-1]][i-1];
    for(int k=fir[u];k!=-1;k=nxt[k])
    {
        if(v[k]!=anc[u][0])
        {
            anc[v[k]][0]=u,dep[v[k]]=dep[u]+1,tofa[v[k]]=w[k];
            getf(v[k]);
        }
    }
}
int Lca(int x,int y)
{
    if(dep[y]>dep[x])swap(x,y);
    dwn(i,17,0)if(dep[anc[x][i]]>=dep[y]&&anc[x][i])x=anc[x][i];
    if(x==y)return x;
    dwn(i,17,0)if(anc[x][i]!=anc[y][i])x=anc[x][i],y=anc[y][i];
    return anc[x][0]; 
}
int getkmp(int id,int len,int nd0,int nd1)
{
    int Len=min(dep[mk[id][0]]-dep[lca[id]],len-1)+min(dep[mk[id][1]]-dep[lca[id]],len-1);
    int x[2],hd=0,tl=Len,nds[2];nds[0]=nd0,nds[1]=nd1;
    rep(i,0,1){x[i]=mk[id][i];dwn(j,17,0)if(dep[anc[x[i]][j]]-dep[lca[id]]>=len-1&&anc[x[i]][j])x[i]=anc[x[i]][j];}
    rep(i,0,1)if(dep[mk[id][i]]-dep[lca[id]]>=len)Q[x[i]].push_back(makeq(-1,nds[i],id,i));
    while(x[0]!=lca[id])kmpS[tl--]=tofa[x[0]],x[0]=anc[x[0]][0];
    while(x[1]!=lca[id])kmpS[++hd]=tofa[x[1]],x[1]=anc[x[1]][0];
    return Len;
}
int fa[maxn];
int kmp(int len,int Len)
{
    fa[1]=0;int hd=0;
    if(len>Len){rep(i,1,len)kmps[i]=0;return 0;}
    rep(i,1,len-1)
    {
        while(hd&&kmps[i+1]!=kmps[hd+1])hd=fa[hd];
        if(kmps[i+1]!=kmps[hd+1])fa[i+1]=hd;
        else fa[i+1]=++hd;
    }
    int u=0,res=0;
    rep(i,1,Len)
    {
        while(kmps[u+1]!=kmpS[i]&&u)u=fa[u];
        if(kmps[u+1]!=kmpS[i])u=0;
        else u++;
        res+=(u==len);
    }
    rep(i,1,len)kmps[i]=fa[i]=0;
    return res;
}
void getans(int u,int nd0,int nd1)
{
    int nd[2],lim=Q[u].size();nd[0]=nd0,nd[1]=nd1;
    rep(i,0,lim-1)ans[Q[u][i].id]+=Q[u][i].fh* t[Q[u][i].tp].query(Q[u][i].nd);
    for(int k=fir[u];k!=-1;k=nxt[k])
    {
        if(v[k]!=anc[u][0])
        {
            rep(i,0,1)t[i].add(t[i].dfn[t[i].ch[nd[i]][w[k]]],1);
            getans(v[k],t[0].ch[nd0][w[k]],t[1].ch[nd1][w[k]]);
            rep(i,0,1)t[i].add(t[i].dfn[t[i].ch[nd[i]][w[k]]],-1);
        }
    }
}
int main()
{
    n=read(),q=read();
    memset(fir,-1,sizeof(fir));
    rep(i,0,1)memset(t[i].fir,-1,sizeof(t[i].fir));
    rep(i,1,n-1)
    {
        int x=read(),y=read();char c=getchar();
        ade(x,y,cx(c)),ade(y,x,cx(c)); 
    }
    getf(1);
    rep(i,1,q)
    {
        mk[i][1]=read(),mk[i][0]=read();scanf("%s",t[0].s+1);
        if(mk[i][1]==mk[i][0]){ans[i]=0;continue;}
        lca[i]=Lca(mk[i][0],mk[i][1]);
        int len=strlen(t[0].s+1),nd[2]; 
        rep(j,1,len)t[1].s[j]=t[0].s[len-j+1],kmps[j]=cx(t[0].s[j]);
        rep(j,0,1){if(dep[mk[i][j]]-dep[lca[i]]>=len)nd[j]=t[j].extend(len),Q[mk[i][j]].push_back(makeq(1,nd[j],i,j));}
        ans[i]=kmp(len,getkmp(i,len,nd[0],nd[1]));
    }
    rep(i,0,1)t[i].getfa(),t[i].getdf(0);
    getans(1,0,0);
    rep(i,1,q)write(ans[i]);
    return 0;
}
在线

很遗憾,并不对劲的人在还有资源的时候太菜了。

一些感想

(想到)在线做法(的人)太强了!

posted @ 2019-08-06 20:31  echo6342  阅读(286)  评论(2编辑  收藏  举报