Manacher算法——最长回文子串

一、相关介绍

最长回文子串

  • s="abcd", 最长回文长度为 1,即a或b或c或d
  • s="ababa", 最长回文长度为 5,即ababa
  • s="abccb", 最长回文长度为 4,即bccb
  • 问题:现给你一个非常长的字符串,请求出其最长回文子串

解决方法

传统解决问题的思路是遍历每一个字符,以该字符为中点向两边查找。其时间复杂度为 O(n2),很不高效。

1975年,一个叫Manacher的人发明了一个算法,Manacher 算法(中文名:马拉车算法),该算法可以把时间复杂度提升到 O(n)。

下面来看看马拉车算法是如何工作的。

 

二、Manacher算法

【算法流程】

由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,具体做法是,在字符串首尾,及字符间各插入一个字符(前提这个字符未出现在串里)。

举个例子:s="abbahopxpo",转换为s_new="$#a#b#b#a#h#o#p#x#p#o#"(这里的字符 $ 只是为了防止越界,下面代码会有说明),如此,s 里起初有一个偶回文abba和一个奇回文opxpo,被转换为#a#b#b#a##o#p#x#p#o#,长度都转换成了奇数

定义一个辅助数组int p[],其中p[i]表示以 i 为中心的最长回文的半径,例如:

可以看出,p[i] - 1正好是原字符串中最长回文串的长度

接下来的重点就是求解 p 数组,如下图:

设置两个变量,mx 和 id 。mx 代表以 id 为中心的最长回文的右边界,也就是mx = id + p[id]

假设我们现在求p[i],也就是以 i 为中心的最长回文半径,如果i < mx,如上图,那么:

1
2
if (i < mx) 
    p[i] = min(p[2 * id - i], mx - i);

2 * id - i i 关于 id 的对称点,即上图的 j 点,而p[j]表示以 j 为中心的最长回文半径,因此我们可以利用p[j]来加快查找。

【加深理解】

根据回文的性质,p[i]的值基于以下三种情况得出:

(1)j 的回文串有一部分在 id 的之外,如下图:

上图中,黑线为 id 的回文,i 与 j 关于 id 对称,红线为 j 的回文。那么根据代码此时p[i] = mx - i,即紫线。那么p[i]还可以更大么?答案是不可能!见下图:

假设右侧新增的紫色部分是p[i]可以增加的部分,那么根据回文的性质,a 等于 d ,也就是说 id 的回文不仅仅是黑线,而是黑线 + 两条紫线,矛盾,所以假设不成立,故p[i] = mx - i,不可以再增加一分。

(2)j 回文串全部在 id 的内部,如下图:

根据代码,此时p[i] = p[j],那么p[i]还可以更大么?答案亦是不可能!见下图:

假设右侧新增的红色部分是p[i]可以增加的部分,那么根据回文的性质,a 等于 b ,也就是说 j 的回文应该再加上 a 和 b ,矛盾,所以假设不成立,故p[i] = p[j],也不可以再增加一分。

(3)j 回文串左端正好与 id 的回文串左端重合,见下图:

根据代码,此时p[i] = p[j]p[i] = mx - i,并且p[i]还可以继续增加,所以需要

1
2
while (s_new[i - p[i]] == s_new[i + p[i]])
    p[i]++;

根据(1)(2)(3),很容易推出 Manacher 算法的最坏情况,即为字符串内全是相同字符的时候。在这里我们重点研究Manacher()中的 for 语句,推算发现 for 语句内平均访问每个字符 5 次,即时间复杂度为:Tworst(n)=O(n)。

同理,我们也很容易知道最佳情况下的时间复杂度,即字符串内字符各不相同的时候。推算得平均访问每个字符 4 次,即时间复杂度为:Tbest(n)=O(n)。

综上,Manacher 算法的时间复杂度为 O(n)

 

三、代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include<iostream> 
#include<string.h>
#include<algorithm> 
using namespace std;
 
char s[1000];
char s_new[2000];
int p[2000];
 
int Init()
{
    int len = strlen(s);
    s_new[0] = '$';
    s_new[1] = '#';
    int j = 2;
 
    for (int i = 0; i < len; i++)
    {
        s_new[j++] = s[i];
        s_new[j++] = '#';
    }
 
    s_new[j] = '\0'//别忘了哦
     
    return j;  //返回s_new的长度
}
 
int Manacher()
{
    int len = Init();  //取得新字符串长度并完成向s_new的转换
    int max_len = -1;  //最长回文长度
 
    int id;
    int mx = 0;
 
    for (int i = 1; i < len; i++)
    {
        if (i < mx)
            p[i] = min(p[2 * id - i], mx - i);  //需搞清楚上面那张图含义, mx和2*id-i的含义
        else
            p[i] = 1;
 
        while (s_new[i - p[i]] == s_new[i + p[i]])  //不需边界判断,因为左有'$',右有'\0'
            p[i]++;
 
        //我们每走一步i,都要和mx比较,我们希望mx尽可能的远,这样才能更有机会执行if (i < mx)这句代码,从而提高效率
        if (mx < i + p[i])
        {
            id = i;
            mx = i + p[i];
        }
 
        max_len = max(max_len, p[i] - 1);
    }
 
    return max_len;
}
 
int main()
{
 
    while (printf("请输入字符串:\n"))
    {
        scanf("%s", s);
        printf("最长回文长度为 %d\n\n", Manacher());
    }
 
    return 0;
}

 

posted @   GGBeng  阅读(276)  评论(0编辑  收藏  举报
编辑推荐:
· 开发中对象命名的一点思考
· .NET Core内存结构体系(Windows环境)底层原理浅谈
· C# 深度学习:对抗生成网络(GAN)训练头像生成模型
· .NET 适配 HarmonyOS 进展
· .NET 进程 stackoverflow异常后,还可以接收 TCP 连接请求吗?
阅读排行:
· 本地部署 DeepSeek:小白也能轻松搞定!
· 基于DeepSeek R1 满血版大模型的个人知识库,回答都源自对你专属文件的深度学习。
· 在缓慢中沉淀,在挑战中重生!2024个人总结!
· 大人,时代变了! 赶快把自有业务的本地AI“模型”训练起来!
· Tinyfox 简易教程-1:Hello World!
点击右上角即可分享
微信分享提示