BC Harry and Magical Computer (拓扑排序)

Harry and Magical Computer

 
 Accepts: 350
 
 Submissions: 1348
 Time Limit: 2000/1000 MS (Java/Others)
 
 Memory Limit: 32768/32768 K (Java/Others)
Problem Description

In reward of being yearly outstanding magic student, Harry gets a magical computer. When the computer begins to deal with a process, it will work until the ending of the processes. One day the computer got n processes to deal with. We number the processes from 1 to n. However there are some dependencies between some processes. When there exists a dependencies (a, b), it means process b must be finished before process a. By knowing all the m dependencies, Harry wants to know if the computer can finish all the n processes.

Input

There are several test cases, you should process to the end of file. For each test case, there are two numbers n m on the first line, indicates the number processes and the number of dependencies. 1n100,1m10000 The next following m lines, each line contains two numbers a b, indicates a dependencies (a, b). 1a,bn

Output

Output one line for each test case. If the computer can finish all the process print "YES" (Without quotes). Else print "NO" (Without quotes).

Sample Input
3 2
3 1
2 1
3 3
3 2
2 1
1 3
Sample Output
YES
NO




拓扑排序模板题。注意在处理IN[i] ++的时候要先判断是否已经存在这条边。
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <string>
 5 #include <cctype>
 6 #include <cmath>
 7 #include <queue>
 8 #include <map>
 9 #include <cstdlib>
10 using    namespace    std;
11 
12 const    int    SIZE = 105;
13 int    IN[SIZE];
14 bool    G[SIZE][SIZE];
15 int    N,M;
16 
17 bool    toposort(void);
18 int    main(void)
19 {
20     int    from,to;
21 
22     while(scanf("%d%d",&N,&M) != EOF)
23     {
24         fill(IN,IN + SIZE,0);
25         fill(&G[0][0],&G[SIZE - 1][SIZE - 1],false);
26         for(int i = 0;i < M;i ++)
27         {
28             scanf("%d%d",&from,&to);
29             if(!G[from][to])
30                 IN[to] ++;
31             G[from][to] = 1;
32         }
33         if(toposort())
34             puts("YES");
35         else
36             puts("NO");
37     }
38 
39     return    0;
40 }
41 
42 bool    toposort(void)
43 {
44     int    count = 0;
45     queue<int>    que;
46 
47     for(int i = 1;i <= N;i ++)
48         if(!IN[i])
49             que.push(i);
50 
51     while(!que.empty())
52     {
53         int    cur = que.front();
54         que.pop();
55         count ++;
56 
57         for(int i = 1;i <= N;i ++)
58             if(G[cur][i])
59             {
60                 IN[i] --;
61                 if(!IN[i])
62                     que.push(i);
63             }
64     }
65     if(count < N)
66         return    false;
67     return    true;
68 }

 

posted @ 2015-05-19 13:41  Decouple  阅读(269)  评论(0编辑  收藏  举报