CF Tavas and Karafs (二分)

Tavas and Karafs
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Karafs is some kind of vegetable in shape of an 1 × h rectangle. Tavaspolis people love Karafs and they use Karafs in almost any kind of food. Tavas, himself, is crazy about Karafs.

Each Karafs has a positive integer height. Tavas has an infinite 1-based sequence of Karafses. The height of the i-th Karafs is si = A + (i - 1) × B.

For a given m, let's define an m-bite operation as decreasing the height of at most m distinct not eaten Karafses by 1. Karafs is considered as eaten when its height becomes zero.

Now SaDDas asks you n queries. In each query he gives you numbers lt and m and you should find the largest number r such that l ≤ r and sequence sl, sl + 1, ..., sr can be eaten by performing m-bite no more than t times or print -1 if there is no such number r.

Input

The first line of input contains three integers AB and n (1 ≤ A, B ≤ 106, 1 ≤ n ≤ 105).

Next n lines contain information about queries. i-th line contains integers l, t, m (1 ≤ l, t, m ≤ 106) for i-th query.

Output

For each query, print its answer in a single line.

Sample test(s)
input
2 1 4
1 5 3
3 3 10
7 10 2
6 4 8
output
4
-1
8
-1
input
1 5 2
1 5 10
2 7 4
output
1
2

 

 

今天才发现比赛时候的算法是对的。。。只不过数据爆了,改成long long就过了,还重新找题解写了一次。。。。

不过新写的更快一点,130ms,二分查找,下界为L,二分查上界,上界的初始值可以算出来。

 1 #include <iostream>
 2 #include <cstring>
 3 #include <algorithm>
 4 #include <cstdio>
 5 #include <ctime>
 6 using    namespace    std;
 7 
 8 long long    bsearch(long long,long long,long long);
 9 
10 long long    A,B;
11 int        main(void)
12 {
13     long long    l,t,m,r;
14     long long    n;
15     
16     scanf("%lld%lld%lld",&A,&B,&n);
17     while(n --)
18     {
19         scanf("%lld%lld%lld",&l,&t,&m);
20         if(t < A + (l - 1) * B)
21         {
22             puts("-1");
23             continue;
24         }
25         r = bsearch(l,t,m);
26         printf("%lld\n",r);
27     }
28     
29     return    0;
30 }
31 
32 long long    bsearch(long long l,long long t,long long m)
33 {
34     long long    low = l;
35     long long    high = (t - A) / B + 1;
36 
37     while(low <= high)
38     {
39         long    long    mid = (low + high) / 2;
40         long    long    box = (A + (l - 1) * B + A + (mid - 1) * B) * (mid - l + 1) / 2;
41 
42         if(box <= m * t)
43             low = mid + 1;
44         else
45             high = mid - 1;
46     }
47 
48     return    low - 1;
49 }

 

posted @ 2015-04-19 17:30  Decouple  阅读(283)  评论(0编辑  收藏  举报