转载: beta分布介绍

最近在看机器学习方面的资料,作为入门的李航教授所写的《统计机器学习》一书,刚看完第一章我也是基本处于懵了的状态,其中有一道题提到贝叶斯估计,看了下网上的资料都提到了一个叫做 beta分布的东西,于是顺着这一线索向下研究于是发现了下面这一文章,读后感觉不错,而且作者是 依据CC版权协议 共享博文,于是转载了过来,也被日后需要查看是方便。

本文转载于  http://blog.csdn.net/a358463121/article/details/52562940

本文 遵照 CC协议。

正文如下:

 

beta分布介绍

相信大家学过统计学的都对 正态分布 二项分布 均匀分布 等等很熟悉了,但是却鲜少有人去介绍beta分布的。

用一句话来说,beta分布可以看作一个概率的概率分布,当你不知道一个东西的具体概率是多少时,它可以给出了所有概率出现的可能性大小。

举一个简单的例子,熟悉棒球运动的都知道有一个指标就是棒球击球率(batting average),就是用一个运动员击中的球数除以击球的总数,我们一般认为0.266是正常水平的击球率,而如果击球率高达0.3就被认为是非常优秀的。

现在有一个棒球运动员,我们希望能够预测他在这一赛季中的棒球击球率是多少。你可能就会直接计算棒球击球率,用击中的数除以击球数,但是如果这个棒球运动员只打了一次,而且还命中了,那么他就击球率就是100%了,这显然是不合理的,因为根据棒球的历史信息,我们知道这个击球率应该是0.215到0.36之间才对啊。

对于这个问题,我们可以用一个二项分布表示(一系列成功或失败),一个最好的方法来表示这些经验(在统计中称为先验信息)就是用beta分布,这表示在我们没有看到这个运动员打球之前,我们就有了一个大概的范围。beta分布的定义域是(0,1)这就跟概率的范围是一样的。

 

接下来我们将这些先验信息转换为beta分布的参数,我们知道一个击球率应该是平均0.27左右,而他的范围是0.21到0.35,那么根据这个信息,我们可以取α=81,β=219

 

 

 

 

之所以取这两个参数是因为:

  • beta分布的均值是αα+β=8181+219=0.27
  • 从图中可以看到这个分布主要落在了(0.2,0.35)间,这是从经验中得出的合理的范围。

 

 在这个例子里,我们的x轴就表示各个击球率的取值,x对应的y值就是这个击球率所对应的概率。也就是说beta分布可以看作一个概率的概率分布。

 

那么有了先验信息后,现在我们考虑一个运动员只打一次球,那么他现在的数据就是”1中;1击”。这时候我们就可以更新我们的分布了,让这个曲线做一些移动去适应我们的新信息。beta分布在数学上就给我们提供了这一性质,他与二项分布是共轭先验的(Conjugate_prior)。所谓共轭先验就是先验分布是beta分布,而后验分布同样是beta分布。结果很简单:

 

 

 

 

 可以看到这个分布其实没多大变化,这是因为只打了1次球并不能说明什么问题。但是如果我们得到了更多的数据,假设一共打了300次,其中击中了100次,200次没击中,那么这一新分布就是:

 

 

 

注意到这个曲线变得更加尖,并且平移到了一个右边的位置,表示比平均水平要高。

 

 

 

 

beta分布与二项分布的共轭先验性质

二项分布

二项分布即重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。

 

二项分布的似然函数

 

 

beta分布

在beta分布中,B函数是一个标准化函数,它只是为了使得这个分布的概率密度积分等于1才加上的。

 

 

贝叶斯估计

我们做贝叶斯估计的目的就是要在给定数据的情况下求出 θ   的值,所以我们的目的是求解如下后验概率

 

 

共轭先验

 

 

参考资料:

1.Understanding the beta distribution (using baseball statistics)
2.20 - Beta conjugate prior to Binomial and Bernoulli likelihoods

 

posted on 2017-12-02 21:45  Angry_Panda  阅读(464)  评论(0编辑  收藏  举报

导航