n皇后编程问题
n皇后编程问题是一个经典问题,记得2018年北京航空航天大学计算机学院的博士招聘的上机题目就是这个,这里给出几种实现方法:
import time
import itertools
Num = 8
# Num = 12 # 8
def f1():
def test_queens(queens):
for x in range(Num):
for y in range(x+1, Num):
if abs(queens[x]-queens[y])==abs(x-y):
return False
return True
counter = 0
for i in range(12345678, 87654321, 1):
s = str(i)
if "0" in s or "9" in s:
continue
if len(set(s)) != 8:
continue
if test_queens([int(digit)-1 for digit in s]):
counter += 1
return counter
def f2():
def conflict(state, nextX):
nextY = len(state)
for i in range(nextY):
if abs(state[i]-nextX) in (0, nextY-i):
return True
return False
def queens(num=Num, state=()):
for pos in range(num):
if not conflict(state, pos):
if len(state) == num-1:
yield (pos, )
else:
for result in queens(num, state+(pos, )):
yield (pos, ) + result
return queens()
def f3():
num = Num
def conflict(queen):
for x in range(num):
for y in range(x+1, num):
if abs(queen[x]-queen[y])==(y-x):
return True
return False
queens = []
for queen in itertools.permutations(range(num)):
if not conflict(queen):
queens.append(queen)
return queens
_a = time.time()
print(f1())
_b = time.time()
print(_b - _a)
_a = time.time()
print(len([x for x in f2()]))
_b = time.time()
print(_b - _a)
_a = time.time()
print(len([x for x in f3()]))
_b = time.time()
print(_b - _a)
上面的实现中,当n=8时,f1()函数实现、f2()函数实现、f3()函数实现的运行时间如下(单位为秒):
92
11.19756269454956
92
0.005673408508300781
92
0.019522428512573242
可以看到f1()函数的实现是f2实现的2000倍的用时,因此在下面的n=12时我们只给出f2()和f3()函数实现下的用时:
14200
4.591862201690674
14200
295.7449884414673
可以看到,f3()的实现下用时是f2()实现下的60倍。
总结:
f2()方法实现是运行时间最短的方法。
f3()方法是f2()用时的60倍。
f1()方法是f2()用时的2000倍。
不过在n=8时,也就是8皇后问题下,f2()和f3()的用时都是符合一般要求的(1秒以内或5秒以内)。
由于f2()中使用了yield,这一点并不通用,于是将其改为return,并加入sss=[ ]作为状态保存,具体代码如下:
import time
import itertools
Num = 8
def f2():
def conflict(state, nextX):
nextY = len(state)
for i in range(nextY):
if abs(state[i]-nextX) in (0, nextY-i):
return True
return False
def queens(num, state=()):
sss = []
for pos in range(num):
if not conflict(state, pos):
if len(state) == num-1:
# yield (pos, )
sss.append((pos,))
else:
for result in queens(num, state+(pos, )):
# yield (pos, ) + result
sss.append( (pos, ) + result )
return sss
return queens(8)
_a = time.time()
print(len([x for x in f2()]))
_b = time.time()
print(_b - _a)
运行结果如下:
不过考虑到即使把f2()中的yield改为return也是需要使用递归算法的,而递归算法是可以使用循环算法来替代的,于是使用循环算法修改f2()中的递归,得到如下代码:
import time
def f2():
def conflict(state, nextX):
nextY = len(state)
for i in range(nextY):
if abs(state[i]-nextX) in (0, nextY-i):
return True
return False
def queens():
s = [[i, ] for i in range(8)] # 初始化
s_tmp = []
count = 0
while count<8-1:
for state in s:
for pos in range(8):
if not conflict(state, pos):
state_copy = state.copy()
state_copy.append(pos)
s_tmp.append(state_copy)
s = s_tmp
s_tmp = []
count += 1
return s
return queens()
_a = time.time()
print(len([x for x in f2()]))
_b = time.time()
print(_b - _a)
运行结果如下:
个人github博客地址:
https://devilmaycry812839668.github.io/
本博客是博主个人学习时的一些记录,不保证是为原创,个别文章加入了转载的源地址,还有个别文章是汇总网上多份资料所成,在这之中也必有疏漏未加标注处,如有侵权请与博主联系。
如果未特殊标注则为原创,遵循 CC 4.0 BY-SA 版权协议。
posted on 2024-11-17 21:44 Angry_Panda 阅读(140) 评论(0) 编辑 收藏 举报