【转载】python画带方差的折线图(csdn上最简洁的代码之一附上)

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

原文链接:https://blog.csdn.net/a1920993165/article/details/122277716



python画带方差的折线图

画好后效果图(直接一个图的)

image



实现代码如下

点击查看代码
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import pyplot
plt.style.use('seaborn-whitegrid')
palette = pyplot.get_cmap('Set1')
font1 = {'family' : 'Times New Roman',
'weight' : 'normal',
'size' : 32,
}
fig=plt.figure(figsize=(20,10))
iters=list(range(7))
#这里随机给了alldata1和alldata2数据用于测试
alldata1=[]#算法1所有纵坐标数据
data=np.array([2,4,5,8,11,13,15])#单个数据
alldata1.append(data)
data=np.array([2,3,6,12,13,13,15])
alldata1.append(data)
data=np.array([2,2,7,9,13,14,16])
alldata1.append(data)
alldata1=np.array(alldata1)
alldata2=[]#算法2所有纵坐标数据
data=np.array([2,4,5,8,10,10,11])#单个数据
alldata2.append(data)
data=np.array([3,3,3,6,7,8,10])
alldata2.append(data)
data=np.array([3,3,5,5,6,7,9])
alldata2.append(data)
alldata2=np.array(alldata2)
def draw_line(name_of_alg,color_index,datas):
color=palette(color_index)
avg=np.mean(datas,axis=0)
std=np.std(datas,axis=0)
r1 = list(map(lambda x: x[0]-x[1], zip(avg, std)))#上方差
r2 = list(map(lambda x: x[0]+x[1], zip(avg, std)))#下方差
plt.plot(iters, avg, color=color,label=name_of_alg,linewidth=3.5)
plt.fill_between(iters, r1, r2, color=color, alpha=0.2)
draw_line("alg1",1,alldata1)
draw_line("alg2",2,alldata2)
plt.xticks(fontsize=22)
plt.yticks(fontsize=22)
plt.xlabel('Time(s)',fontsize=32)
plt.ylabel('metric',fontsize=32)
plt.legend(loc='upper left',prop=font1)
plt.title("instance",fontsize=34)


画好后效果图(在ax子图里面的)

image



点击查看代码
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import pyplot
plt.style.use('seaborn-whitegrid')
palette = pyplot.get_cmap('Set1')
font1 = {'family' : 'Times New Roman',
'weight' : 'normal',
'size' : 18,
}
fig=plt.figure(figsize=(20,10))
iters=list(range(7))
#这里随机给了alldata1和alldata2数据用于测试
alldata1=[]#算法1所有纵坐标数据
data=np.array([2,4,5,8,11,13,15])#单个数据
alldata1.append(data)
data=np.array([2,3,6,12,13,13,15])
alldata1.append(data)
data=np.array([2,2,7,9,13,14,16])
alldata1.append(data)
alldata1=np.array(alldata1)
alldata2=[]#算法2所有纵坐标数据
data=np.array([2,4,5,8,10,10,11])#单个数据
alldata2.append(data)
data=np.array([3,3,3,6,7,8,10])
alldata2.append(data)
data=np.array([3,3,5,5,6,7,9])
alldata2.append(data)
alldata2=np.array(alldata2)
for i in range(2):
color=palette(0)#算法1颜色
ax=fig.add_subplot(1,2,i+1)
avg=np.mean(alldata1,axis=0)
std=np.std(alldata1,axis=0)
r1 = list(map(lambda x: x[0]-x[1], zip(avg, std)))#上方差
r2 = list(map(lambda x: x[0]+x[1], zip(avg, std)))#下方差
ax.plot(iters, avg, color=color,label="algo1",linewidth=3.0)
ax.fill_between(iters, r1, r2, color=color, alpha=0.2)
color=palette(1)
avg=np.mean(alldata2,axis=0)
std=np.std(alldata2,axis=0)
r1 = list(map(lambda x: x[0]-x[1], zip(avg, std)))
r2 = list(map(lambda x: x[0]+x[1], zip(avg, std)))
ax.plot(iters, avg, color=color,label="algo2",linewidth=3.0)
ax.fill_between(iters, r1, r2, color=color, alpha=0.2)
ax.legend(loc='lower right',prop=font1)
ax.set_xlabel('Outer loop iterations',fontsize=22)
ax.set_ylabel('Objectives',fontsize=22)


posted on   Angry_Panda  阅读(196)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2023-06-04 大连人工智能计算平台——华为昇腾AI平台——高性能计算HPC的C语言运行环境及作业的配置
2021-06-04 【转载】 模型融合
2017-06-04 matplotlib.pyplot中add_subplot方法参数111的含义
2017-06-04 转载:(论文) 二次指数平滑法中确定初始值的简便方法

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示